Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries

电极 材料科学 曲折 锂(药物) 电化学 电池(电) 纳米技术 阴极 电化学动力学 阳极 工程物理 复合材料 化学 电气工程 功率(物理) 多孔性 工程类 热力学 物理化学 内分泌学 物理 医学
作者
Xiaofei Yang,Kieran Doyle‐Davis,Xuejie Gao,Xueliang Sun
出处
期刊:eTransportation [Elsevier]
卷期号:11: 100152-100152 被引量:100
标识
DOI:10.1016/j.etran.2021.100152
摘要

All-solid-state lithium batteries (ASSLBs) with higher energy density and improved safety have been regarded as an alternative to the state-of-the-art Li-ion batteries. As a critical component of the battery, the active materials are stored in the cathode, which directly determines the capacity and energy density output. Increasing the thickness of the electrodes can raise the ratio of active materials in the packaged cell, thus showing the potential to achieve higher energy densities. However, the development of thickness-based ASSLBs is still hindered by the sluggish electrochemical kinetics caused by the slow Li+/e− transport in the high-tortuosity channels/pathways. In this review, we comprehensively summarize the recent progress in the emerging area of thick electrodes to solve the critical issue and develop high-performance ASSLBs. Firstly, we overview the recent developments in the design of thick electrodes with continuous Li+/e− transport pathways and low-tortuosity structures. After that, the interfacial engineering on creating a favorable SSE/electrode material interface is reviewed. Subsequently, several factors such as particle size, binder, crystal structure and solvent that have a great influence on building Li+/e− transport pathways are discussed. Moreover, the improvement of intrinsic electrochemical kinetics via high-conductivity electrode design is introduced. Lastly, the recent development of thick electrode-based ASSLB pouch cells are summarized, and the future directions of thick electrodes in ASSLBs are speculated upon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到,获得积分10
刚刚
泥豪泥嚎完成签到 ,获得积分10
1秒前
2秒前
2秒前
开放青旋应助小刘不牛采纳,获得20
2秒前
gjyr发布了新的文献求助10
3秒前
香蕉觅云应助麦兜采纳,获得10
3秒前
牙牙发布了新的文献求助10
3秒前
3秒前
求助人员发布了新的文献求助10
3秒前
bkagyin应助MAX33采纳,获得10
4秒前
魔幻雨梅发布了新的文献求助10
4秒前
4秒前
123完成签到,获得积分10
5秒前
上官若男应助温柔的尔芙采纳,获得10
5秒前
Twonej应助威武的夜绿采纳,获得20
5秒前
李爱国应助雪山飞龙采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
白潇潇发布了新的文献求助10
6秒前
彩虹小马发布了新的文献求助20
7秒前
紫藤完成签到,获得积分10
7秒前
7秒前
我不吃辣条完成签到,获得积分20
8秒前
penglinhua发布了新的文献求助10
8秒前
花卷发布了新的文献求助10
8秒前
9秒前
9秒前
apple红了完成签到 ,获得积分10
10秒前
CipherSage应助坦率曼寒采纳,获得10
11秒前
wanci应助丽优采纳,获得10
12秒前
13秒前
14秒前
14秒前
CHEN完成签到 ,获得积分10
15秒前
ChatGPT发布了新的文献求助10
15秒前
长风完成签到 ,获得积分10
16秒前
淡然善斓发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499