区域选择性
化学
位阻效应
酮
亲核细胞
电泳剂
有机化学
二胺
药物化学
催化作用
作者
Gayanthi Attanayake,Guohong Mao,Kevin D. Walker
标识
DOI:10.1021/acs.jafc.1c05786
摘要
Alkylpyrazines are important heterocyclic compounds used as flavorants in food and beverage industries. In this study, a regioselective semibiocatalytic process was developed to synthesize 2-ethyl-3,5-dimethylpyrazine (235-EDMP) over its 3-ethyl-2,5-dimethyl pyrazine (325-EDMP) isomer and vice versa. We initially explored how sterics could direct the coupling orientations between diamines and diketones to access 235- or 325-EDMP selectively. Also, the physical parameters of the reaction conditions were changed, such as reduced temperature, the order-of-addition of the reactants, and supplementation with chiral zeolites to template the orientation of the coupling partners to direct the reaction regiochemistry. Each reaction trial resulted in 50:50 mixtures of the EDMP isomers. An alternative approach was explored to control the regioselectivity of the reactions; α-hydroxy ketones replaced the diketones as the electrophilic coupling reactant used in previous trial experiments. The hydroxy ketone reactants were made biocatalytically with pyruvate decarboxylase. The coupling reaction between 2-hydroxypentan-3-one and propane-1,2-diamine resulted in the desired 235-EDMP at >70% (∼77 mg) relative to 325-EDMP in the mixture. The 3-hydroxypentan-2-one congener was biocatalyzed and reacted with propane-1,2-diamine as a proof of principle to synthesize 325-EDMP (∼60% relative abundance, ∼73 mg) over 235-EDMP. These results suggested a mechanism that was directed by the hydroxy ketone electrophilicity and the sterics at the diamine nucleophilic centers.
科研通智能强力驱动
Strongly Powered by AbleSci AI