摘要
Phloem sieve element (SE) occlusion has been hypothesized for decades to be a mechanism of resistance against phloem sap-feeding insects. Few studies have tested this hypothesis although it is likely a widespread phenomenon. This review focuses on SE occlusion by callose and P-proteins. Both are reversible, which would allow the plant to defend itself against phloem sap-feeders when SEs are penetrated and resume normal function when the insects give up and withdraw their stylets. Callose (β-1,3 glucans with some β-1,6 branches) serves many roles in plant physiology in many different tissues, each being under the control of different callose synthase genes; only callose deposited in SE sieve pores is relevant to SE occlusion. The amount of callose in sieve pores (and consequently how much it impedes sap flow) is determined by the balance in activity between callose synthase and β-1,3 glucanase. Sieve pore callose deposition has been shown to provide resistance to some phloem sap-feeders in a few studies, and in one, the difference in resistance between a susceptible and resistant rice variety was due to the ability or inability of the insect to upregulate the plants' β-1,3 glucanase that degrades the callose deposition. P-proteins occur only in dicotyledons and include a variety of proteins, not all of which are involved in SE occlusion. In some plants, P-proteins form distinct bodies in mature functional SEs. In papilionid legumes, these discrete bodies, called forisomes can expand and contract. In their expanded state, they effectively plug SEs and stop the flow of sap while in their contracted state, they provide negligible resistance to sap flow. Expansion of forisomes is triggered by an influx of Ca2+ into the SE. Penetration of a legume (Vicia faba) SE by a generalist aphid not adapted to legumes triggers forisome expansion which occludes the SE and prevents the aphid from ingesting sap. In contrast, a legume specialist aphid, Acyrthosiphon pisum, does not trigger forisome expansion and readily ingests sap from V. faba. P-protein bodies in SEs of non-legumes do not appear to be involved in SE occlusion. In most dicotyledons, P-proteins do not form discrete bodies, but rather occur as filamentous aggregations adhering to the parietal margins of the SE and in response to damage, are released into the lumen where they are carried by the flow of sap to the downstream sieve plate where they back up and clog the sieve pores. Their effectiveness at actually stopping the flow of sap is controversial. In one study, they seemed to provide little resistance to the flow of sap while in other studies, they provided considerable resistance. In response to injury in melon, they completely stop the flow of sap, and in an aphid-resistant melon, penetration of SEs by the melon aphid, Aphis gossypii, triggers P-protein occlusion which prevents the aphids from ingesting sap. The first P-protein described, PP1, occurs only in the genus Cucurbita, and although it has been often cited to function as a SE occlusion protein, experimental evidence suggests it does not play a significant role in SE occlusion. The most common strategy for phloem sap-feeders to mitigate P-protein occlusion seems to be avoid triggering it. A widely cited in vitro study suggested that aphid saliva can reverse P-protein occlusion, but a subsequent study demonstrated that saliva was ineffective at reversing P-protein occlusion in vivo. Lastly, SE callose deposition in wheat triggered by Russian wheat aphid has been hypothesized to create an artificial sink that benefits the aphid, but additional studies are needed to test that hypothesis.