Combination forecasting using multiple attribute decision making in tourism demand

加权 旅游 计算机科学 背景(考古学) 依赖关系(UML) 计量经济学 运筹学 经济 人工智能 数学 地理 医学 放射科 考古
作者
Yi‐Chung Hu
出处
期刊:Tourism Review [Emerald (MCB UP)]
卷期号:77 (3): 731-750 被引量:12
标识
DOI:10.1108/tr-09-2021-0451
摘要

Purpose This study aims to address three important issues of combination forecasting in the tourism context: reducing the restrictions arising from requirements related to the statistical properties of the available data, assessing the weights of single models and considering nonlinear relationships among combinations of single-model forecasts. Design Methodology Approach A three-stage multiple-attribute decision-making (MADM)-based methodological framework was proposed. Single-model forecasts were generated by grey prediction models for the first stage. Vlsekriterijumska Optimizacija I Kompromisno Resenje was adopted to develop a weighting scheme in the second stage, and the Choquet integral was used to combine forecasts nonlinearly in the third stage. Findings The empirical results for inbound tourism in Taiwan showed that the proposed method can significantly improve accuracy to a greater extent than other combination methods. Along with scenario forecasting, a good forecasting practice can be further provided by estimating ex-ante forecasts post-COVID-19. Practical Implications The private and public sectors in economies with high tourism dependency can benefit from the proposed method by using the forecasts to help them formulate tourism strategies. Originality Value This study contributed to presenting a MADM-based framework that advances the development of a more accurate combination method for tourism forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的芫发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
在望发布了新的文献求助10
刚刚
1秒前
2秒前
所所应助阿苗采纳,获得10
3秒前
丹丹丹发布了新的文献求助10
3秒前
Yolo发布了新的文献求助10
4秒前
4秒前
dddd发布了新的文献求助10
6秒前
11mao11完成签到 ,获得积分10
6秒前
木之木发布了新的文献求助10
6秒前
大模型应助czs采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
田様应助暴躁无敌采纳,获得10
10秒前
11秒前
情怀应助愉快的翅膀采纳,获得10
11秒前
香蕉觅云应助小亮哈哈采纳,获得10
11秒前
14秒前
Yolo完成签到,获得积分10
14秒前
667完成签到,获得积分10
15秒前
镜谢不敏发布了新的文献求助10
15秒前
华仔应助王什么采纳,获得10
16秒前
深情安青应助开心的西瓜采纳,获得10
16秒前
16秒前
17秒前
Hello应助modesty采纳,获得10
17秒前
yuner完成签到,获得积分10
17秒前
UN完成签到,获得积分10
18秒前
19秒前
安谢发布了新的文献求助10
19秒前
20秒前
FashionBoy应助old杜采纳,获得10
20秒前
hahameily完成签到 ,获得积分10
20秒前
田様应助WuYueYun采纳,获得10
20秒前
小象完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921