Combination forecasting using multiple attribute decision making in tourism demand

加权 旅游 计算机科学 背景(考古学) 依赖关系(UML) 计量经济学 运筹学 经济 人工智能 数学 地理 医学 放射科 考古
作者
Yi‐Chung Hu
出处
期刊:Tourism Review [Emerald (MCB UP)]
卷期号:77 (3): 731-750 被引量:12
标识
DOI:10.1108/tr-09-2021-0451
摘要

Purpose This study aims to address three important issues of combination forecasting in the tourism context: reducing the restrictions arising from requirements related to the statistical properties of the available data, assessing the weights of single models and considering nonlinear relationships among combinations of single-model forecasts. Design Methodology Approach A three-stage multiple-attribute decision-making (MADM)-based methodological framework was proposed. Single-model forecasts were generated by grey prediction models for the first stage. Vlsekriterijumska Optimizacija I Kompromisno Resenje was adopted to develop a weighting scheme in the second stage, and the Choquet integral was used to combine forecasts nonlinearly in the third stage. Findings The empirical results for inbound tourism in Taiwan showed that the proposed method can significantly improve accuracy to a greater extent than other combination methods. Along with scenario forecasting, a good forecasting practice can be further provided by estimating ex-ante forecasts post-COVID-19. Practical Implications The private and public sectors in economies with high tourism dependency can benefit from the proposed method by using the forecasts to help them formulate tourism strategies. Originality Value This study contributed to presenting a MADM-based framework that advances the development of a more accurate combination method for tourism forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气善斓应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
Jason应助科研通管家采纳,获得10
刚刚
彳亍1117应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
帅气善斓应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
keyan应助科研通管家采纳,获得10
1秒前
帅气善斓应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Xx应助科研通管家采纳,获得10
1秒前
叶95完成签到,获得积分10
1秒前
liao应助科研通管家采纳,获得10
1秒前
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
3秒前
沐风发布了新的文献求助10
3秒前
3秒前
思源应助动人的剑采纳,获得10
3秒前
蝴蝶变成毛毛虫完成签到,获得积分10
4秒前
歪方橘完成签到 ,获得积分10
5秒前
小马甲应助冷艳莛采纳,获得10
5秒前
华仔应助remoon1104采纳,获得10
7秒前
yy完成签到,获得积分10
7秒前
song完成签到 ,获得积分10
7秒前
8秒前
一枝独秀完成签到 ,获得积分10
8秒前
兴奋的乐巧完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
整齐半青完成签到 ,获得积分10
11秒前
13秒前
沐黎完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814