Left Ventricle Segmentation in Cardiac MR: A Systematic Mapping of the Past Decade

分割 计算机科学 人工智能 分类 过程(计算) 图像分割 模式识别(心理学) 计算机视觉 操作系统
作者
Matheus A. O. Ribeiro,Fátima L. S. Nunes
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (11s): 1-38 被引量:9
标识
DOI:10.1145/3517190
摘要

Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic approaches have been proposed, mainly using image-based, atlas, graph, deformable model, and artificial intelligence methods. This article presents a systematic mapping on left ventricle segmentation, considering 74 studies published in the past decade. The main contributions of this review are definition of the main segmentation challenges in these images; proposal of a new schematization, dividing the segmentation process into stages; categorization and analysis of the segmentation methods, including hybrid combinations; and analysis of the evaluation process, metrics, and databases. The performance of the methods in the most used public database is assessed, and the main limitations, weaknesses, and strengths of each method category are presented. Finally, trends, challenges, and research opportunities are discussed. The analysis indicates that methods from all categories can achieve good performance, and hybrid methods combining deep learning and deformable models obtain the best results. Methods still fail in specific slices, segment wrong regions, and produce anatomically impossible segmentations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨听寒应助豆豆采纳,获得10
2秒前
善学以致用应助好了采纳,获得10
3秒前
毛豆应助雪落采纳,获得10
3秒前
思源应助bemyselfelsa采纳,获得10
4秒前
Owen应助wen采纳,获得10
4秒前
6秒前
啪啪啪完成签到,获得积分10
6秒前
CipherSage应助橘络采纳,获得10
6秒前
tqy发布了新的文献求助10
7秒前
嘟嘟许完成签到 ,获得积分10
7秒前
万能图书馆应助调皮嫣娆采纳,获得10
8秒前
9秒前
wang完成签到,获得积分10
9秒前
10秒前
乐乐应助温柔的鹭洋采纳,获得30
10秒前
生鱼安乐完成签到 ,获得积分10
10秒前
大模型应助Lee采纳,获得10
10秒前
11秒前
田様应助tqy采纳,获得10
11秒前
啪啪啪发布了新的文献求助10
11秒前
11秒前
12秒前
田様应助小喻采纳,获得10
13秒前
昔年若许发布了新的文献求助10
13秒前
Flanlove完成签到 ,获得积分10
13秒前
木兆完成签到 ,获得积分10
14秒前
传奇3应助周洋采纳,获得10
15秒前
YUYU发布了新的文献求助10
15秒前
zzzllove发布了新的文献求助10
17秒前
刘璇1发布了新的文献求助10
17秒前
天天快乐应助Jonathan采纳,获得10
18秒前
19秒前
行隐应助zcz采纳,获得10
19秒前
20秒前
完美世界应助nonTUT采纳,获得10
20秒前
21秒前
21秒前
21秒前
饱满含玉发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589