Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane

海水 电渗析 化学 过电位 电化学 矿化(土壤科学) 无机化学 化学工程 电极 地质学 海洋学 有机化学 物理化学 氮气 工程类 生物化学
作者
Rezvan Sharifian,Leonie de Boer,R. Martijn Wagterveld,David A. Vermaas
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:438: 135326-135326 被引量:53
标识
DOI:10.1016/j.cej.2022.135326
摘要

Bipolar membrane electrodialysis (BPMED) can provide a sustainable route to capture the oceanic-dissolved inorganic carbon (DIC) using an electrochemical pH-swing concept. Previous works demonstrated how gaseous CO2 (through acidification) can be obtained from ocean water, and how carbonate minerals can be provided via ex situ alkalinization. In this work, we present, for the first time, the in situ mineralization via the alkalinization route using both real and synthetic seawater. An in situ pH-swing, inside of the BPMED cell, allows reducing the energy consumption of the oceanic-DIC capture. We demonstrate that, by accurately controlling the applied current density and cell residence time, the energy required for the process can be indeed lowered through facilitating an optimized pH in the cell (i.e., base-pH 9.6–10). Within this alkaline pH-window, we capture between 60% (for real seawater) up to 85% (for synthetic seawater) of the DIC from the feed, together with minor Mg(OH)2 precipitates. The CaCO3(s) production increases linearly with the applied current density, with a theoretical maximum extraction of 97 %. The energy consumption is dominated by the ohmic losses and BPM-overpotential. Through tuning the current density and flow rate, we optimised the energy consumption by applying a mild in situ pH-swing of ca. pH 3.2 – 9.75 (for real seawater). As a result, aragonite was extracted by using of 318 ± 29 kJ mol−1 CaCO3(s) (i.e., ca. 0.88 kWh kg−1 CaCO3(s)) from real seawater in a cell containing ten bipolar – cation exchange membrane cell pairs, which is less than half of the previously lowest energy consumption for carbonate mineralization from (synthetic) seawater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UMA发布了新的文献求助10
1秒前
ho应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得100
3秒前
小青椒应助科研通管家采纳,获得150
3秒前
WB87应助科研通管家采纳,获得30
3秒前
ho应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得80
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得100
4秒前
ho应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
7秒前
机灵的幻灵完成签到 ,获得积分10
7秒前
漫漫完成签到 ,获得积分10
8秒前
8秒前
结王三完成签到,获得积分10
8秒前
8秒前
cryjslong完成签到,获得积分10
8秒前
9秒前
风趣的涵柏完成签到 ,获得积分10
9秒前
pluto应助Kryptonite采纳,获得10
10秒前
RATHER发布了新的文献求助10
12秒前
往好处想完成签到,获得积分10
14秒前
落后若山发布了新的文献求助10
14秒前
伶俐的寒凡完成签到 ,获得积分10
14秒前
畅快谷蕊完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助10
19秒前
隐形曼青应助哆来米采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
23秒前
23秒前
tjzbw完成签到,获得积分10
24秒前
落后若山完成签到,获得积分20
24秒前
小二郎应助踏实小蘑菇采纳,获得10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425301
求助须知:如何正确求助?哪些是违规求助? 4539379
关于积分的说明 14167473
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444285
邀请新用户注册赠送积分活动 1435283
关于科研通互助平台的介绍 1412688