Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane

海水 电渗析 化学 过电位 电化学 矿化(土壤科学) 无机化学 化学工程 电极 地质学 海洋学 有机化学 物理化学 氮气 工程类 生物化学
作者
Rezvan Sharifian,Leonie de Boer,R. Martijn Wagterveld,David A. Vermaas
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:438: 135326-135326 被引量:53
标识
DOI:10.1016/j.cej.2022.135326
摘要

Bipolar membrane electrodialysis (BPMED) can provide a sustainable route to capture the oceanic-dissolved inorganic carbon (DIC) using an electrochemical pH-swing concept. Previous works demonstrated how gaseous CO2 (through acidification) can be obtained from ocean water, and how carbonate minerals can be provided via ex situ alkalinization. In this work, we present, for the first time, the in situ mineralization via the alkalinization route using both real and synthetic seawater. An in situ pH-swing, inside of the BPMED cell, allows reducing the energy consumption of the oceanic-DIC capture. We demonstrate that, by accurately controlling the applied current density and cell residence time, the energy required for the process can be indeed lowered through facilitating an optimized pH in the cell (i.e., base-pH 9.6–10). Within this alkaline pH-window, we capture between 60% (for real seawater) up to 85% (for synthetic seawater) of the DIC from the feed, together with minor Mg(OH)2 precipitates. The CaCO3(s) production increases linearly with the applied current density, with a theoretical maximum extraction of 97 %. The energy consumption is dominated by the ohmic losses and BPM-overpotential. Through tuning the current density and flow rate, we optimised the energy consumption by applying a mild in situ pH-swing of ca. pH 3.2 – 9.75 (for real seawater). As a result, aragonite was extracted by using of 318 ± 29 kJ mol−1 CaCO3(s) (i.e., ca. 0.88 kWh kg−1 CaCO3(s)) from real seawater in a cell containing ten bipolar – cation exchange membrane cell pairs, which is less than half of the previously lowest energy consumption for carbonate mineralization from (synthetic) seawater.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴太英完成签到,获得积分20
1秒前
lizh187完成签到 ,获得积分10
1秒前
情怀应助hyw采纳,获得10
2秒前
王加通完成签到,获得积分10
3秒前
3秒前
3秒前
blue完成签到 ,获得积分10
5秒前
6秒前
7秒前
芳菲依旧应助mmol采纳,获得30
8秒前
wanci应助独特的高山采纳,获得10
8秒前
8秒前
田雨鑫完成签到,获得积分10
9秒前
苗条的雨雪完成签到,获得积分20
9秒前
fujuzhang完成签到 ,获得积分10
10秒前
10秒前
香蕉觅云应助YE采纳,获得10
11秒前
Joy完成签到,获得积分10
12秒前
KKKZ发布了新的文献求助10
13秒前
Rgly发布了新的文献求助10
13秒前
11完成签到 ,获得积分10
14秒前
FashionBoy应助乒乒乓乓采纳,获得30
14秒前
15秒前
16秒前
体贴雨真完成签到,获得积分10
16秒前
无限的梦安完成签到,获得积分20
17秒前
TTT发布了新的文献求助10
18秒前
细心夏瑶完成签到,获得积分10
19秒前
milagu完成签到,获得积分10
19秒前
19秒前
nana发布了新的文献求助10
20秒前
清鱼坊完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
彭于晏应助ifly采纳,获得10
22秒前
饱满雅香完成签到,获得积分10
22秒前
剑九黄完成签到,获得积分10
23秒前
瘦瘦冰凡发布了新的文献求助10
24秒前
Wnn完成签到 ,获得积分10
25秒前
25秒前
传奇3应助nana采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652973
求助须知:如何正确求助?哪些是违规求助? 4788997
关于积分的说明 15062459
捐赠科研通 4811632
什么是DOI,文献DOI怎么找? 2573955
邀请新用户注册赠送积分活动 1529728
关于科研通互助平台的介绍 1488403