White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems

计算机科学 水准点(测量) 元启发式 启发式 数学优化 集合(抽象数据类型) 启发式 算法 人工智能 数学 大地测量学 程序设计语言 地理
作者
Malik Braik,Abdelaziz I. Hammouri,Jaffar Atwan,Mohammed Azmi Al‐Betar,Mohammed A. Awadallah
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108457-108457 被引量:321
标识
DOI:10.1016/j.knosys.2022.108457
摘要

This paper presents a novel meta-heuristic algorithm so-called White Shark Optimizer (WSO) to solve optimization problems over a continuous search space. The core ideas and underpinnings of WSO are inspired by the behaviors of great white sharks, including their exceptional senses of hearing and smell while navigating and foraging. These aspects of behavior are mathematically modeled to accommodate a sufficiently adequate balance between exploration and exploitation of WSO and to assist search agents to explore and exploit each potential area of the search space in order to achieve optimization. The search agents of WSO randomly update their position in connection with best-so-far solutions, to eventually arrive at the optimal outcome. The performance of WSO was comprehensively benchmarked on a set of 29 test functions from the CEC-2017 test suite for several dimensions. WSO was further applied to solve the benchmark problems of the CEC-2011 evolutionary algorithm competition to prove its reliability and applicability to real-world problems. A thorough analysis of computational and convergence results was presented to shed light on the efficacy and stability levels of WSO. The performance score of WSO in terms of several statistical methods was compared with 9 well-established meta-heuristics based on the solutions generated. Friedman’s and Holm’s tests of the results showed that WSO revealed reasonable solutions, in terms of global optimality, avoidance of local minima and solution quality, compared to other existing meta-heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤火完成签到,获得积分10
刚刚
1128完成签到,获得积分10
1秒前
自然的菲鹰完成签到,获得积分10
1秒前
愉快的囧完成签到 ,获得积分10
1秒前
2秒前
大侠完成签到,获得积分10
3秒前
西姆发布了新的文献求助10
3秒前
4秒前
失眠的哈密瓜完成签到,获得积分10
4秒前
cyrong完成签到,获得积分10
5秒前
dreammaker完成签到,获得积分10
5秒前
儒雅的觅波完成签到,获得积分20
6秒前
大力大楚完成签到,获得积分10
7秒前
7秒前
7秒前
niu牛完成签到,获得积分10
8秒前
彬墩墩完成签到,获得积分10
9秒前
安一完成签到,获得积分10
10秒前
Lisztan完成签到,获得积分10
10秒前
11秒前
11秒前
Fier关注了科研通微信公众号
11秒前
11秒前
ymxlcfc完成签到 ,获得积分10
12秒前
12秒前
松松发布了新的文献求助10
14秒前
14秒前
CY发布了新的文献求助10
15秒前
木歌发布了新的文献求助10
15秒前
汉堡包应助冷酷含羞草采纳,获得10
16秒前
山月发布了新的文献求助30
16秒前
rysben发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
芳芳完成签到,获得积分20
19秒前
21秒前
22秒前
23秒前
许容完成签到,获得积分10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239175
求助须知:如何正确求助?哪些是违规求助? 2884482
关于积分的说明 8233946
捐赠科研通 2552483
什么是DOI,文献DOI怎么找? 1380843
科研通“疑难数据库(出版商)”最低求助积分说明 649086
邀请新用户注册赠送积分活动 624817