White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems

计算机科学 水准点(测量) 元启发式 启发式 数学优化 集合(抽象数据类型) 启发式 算法 人工智能 数学 大地测量学 程序设计语言 地理
作者
Malik Braik,Abdelaziz I. Hammouri,Jaffar Atwan,Mohammed Azmi Al‐Betar,Mohammed A. Awadallah
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108457-108457 被引量:451
标识
DOI:10.1016/j.knosys.2022.108457
摘要

This paper presents a novel meta-heuristic algorithm so-called White Shark Optimizer (WSO) to solve optimization problems over a continuous search space. The core ideas and underpinnings of WSO are inspired by the behaviors of great white sharks, including their exceptional senses of hearing and smell while navigating and foraging. These aspects of behavior are mathematically modeled to accommodate a sufficiently adequate balance between exploration and exploitation of WSO and to assist search agents to explore and exploit each potential area of the search space in order to achieve optimization. The search agents of WSO randomly update their position in connection with best-so-far solutions, to eventually arrive at the optimal outcome. The performance of WSO was comprehensively benchmarked on a set of 29 test functions from the CEC-2017 test suite for several dimensions. WSO was further applied to solve the benchmark problems of the CEC-2011 evolutionary algorithm competition to prove its reliability and applicability to real-world problems. A thorough analysis of computational and convergence results was presented to shed light on the efficacy and stability levels of WSO. The performance score of WSO in terms of several statistical methods was compared with 9 well-established meta-heuristics based on the solutions generated. Friedman’s and Holm’s tests of the results showed that WSO revealed reasonable solutions, in terms of global optimality, avoidance of local minima and solution quality, compared to other existing meta-heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香菜发布了新的文献求助10
1秒前
hf发布了新的文献求助10
1秒前
3秒前
爱听歌长颈鹿完成签到,获得积分20
3秒前
852应助抓恐龙采纳,获得10
3秒前
4秒前
小小鱼完成签到,获得积分10
4秒前
4秒前
单薄的小鸽子完成签到,获得积分10
5秒前
6秒前
charon完成签到,获得积分20
6秒前
bkagyin应助fff采纳,获得10
6秒前
小宇发布了新的文献求助10
7秒前
7秒前
1111发布了新的文献求助10
7秒前
单薄凌蝶完成签到,获得积分10
8秒前
8秒前
哄哄完成签到,获得积分10
8秒前
求知若渴完成签到,获得积分10
8秒前
ysf完成签到,获得积分10
9秒前
如意航空完成签到,获得积分10
10秒前
洛杉矶的奥斯卡完成签到,获得积分10
10秒前
yxy完成签到,获得积分10
10秒前
10秒前
Anoxia完成签到,获得积分10
11秒前
wangwenzhe完成签到,获得积分20
11秒前
KX完成签到,获得积分10
11秒前
意大利完成签到,获得积分10
11秒前
weiwei完成签到,获得积分10
11秒前
迟大猫应助波波采纳,获得10
11秒前
Rebekah完成签到,获得积分10
12秒前
躺平科研大叔完成签到,获得积分10
12秒前
无花果应助调皮冰旋采纳,获得10
12秒前
HU发布了新的文献求助10
12秒前
happyboy2008完成签到,获得积分10
12秒前
科研通AI5应助研友_8RlQ2n采纳,获得10
12秒前
Anoxia发布了新的文献求助30
13秒前
两酒窝完成签到,获得积分10
14秒前
七十三度完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678