Assessing the depression risk in the U.S. adults using nomogram

医学 列线图 逻辑回归 萧条(经济学) 婚姻状况 生物统计学 队列 流行病学 病人健康调查表 人口学 精神科 环境卫生 人口 内科学 焦虑 抑郁症状 经济 社会学 宏观经济学
作者
Yafeng Zhang,Wei Tian,Xinhao Han,Guangcan Yan,Yuanshuo Ma,Shan Huo,Yu Shi,Shanshan Dai,Xin Ni,Zhe Li,Lihua Fan,Qiuju Zhang
出处
期刊:BMC Public Health [Springer Nature]
卷期号:22 (1) 被引量:8
标识
DOI:10.1186/s12889-022-12798-6
摘要

Abstract Background Depression has received a lot of attention as a common and serious illness. However, people are rarely aware of their current depression risk probabilities. We aimed to develop and validate a predictive model applicable to the risk of depression in US adults. Methods This study was conducted using the database of the National Health and Nutrition Examination Survey (NHANES, 2017–2012). In particular, NHANES (2007–2010) was used as the training cohort ( n = 6015) for prediction model construction and NHANES (2011–2012) was used as the validation cohort ( n = 2812) to test the model. Depression was assessed (defined as a binary variable) by the Patient Health Questionnaire (PHQ-9). Socio-demographic characteristics, sleep time, illicit drug use and anxious days were assessed using a self-report questionnaire. Logistic regression analysis was used to evaluate independent risk factors for depression. The nomogram has the advantage of being able to visualize complex statistical prediction models as risk estimates of individualized disease probabilities. Then, we developed two depression risk nomograms based on the results of logistic regression. Finally, several validation methods were used to evaluate the prediction performance of nomograms. Results The predictors of model 1 included gender, age, income, education, marital status, sleep time and illicit drug use, and model 2, furthermore, included anxious days. Both model 1 and model 2 showed good discrimination ability, with a bootstrap-corrected C index of 0.71 (95% CI, 0.69–0.73) and 0.85 (95% CI, 0.83–0.86), and an externally validated C index of 0.71 (95% CI, 0.68–0.74) and 0.83 (95% CI, 0.81–0.86), respectively, and had well-fitted calibration curves. The area under the receiver operating characteristic curve (AUC) values of the models with 1000 different weighted random sampling and depression scores of 10–17 threshold range were higher than 0.7 and 0.8, respectively. Calculated net reclassification improvement (NRI) and integrated discrimination improvement (IDI) showed the discrimination or accuracy of the prediction models. Decision curve analysis (DCA) demonstrated that the depression models were practically useful. The network calculators work for participants to make personalized predictions. Conclusions This study presents two prediction models of depression, which can effectively and accurately predict the probability of depression as well as helping the U.S. civilian non-institutionalized population to make optimal treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
2秒前
你的qq发布了新的文献求助10
2秒前
huy完成签到 ,获得积分10
4秒前
6秒前
6秒前
Lighters完成签到 ,获得积分10
6秒前
6秒前
无辜靖巧完成签到 ,获得积分10
7秒前
MJH123456完成签到 ,获得积分10
8秒前
景妙海完成签到 ,获得积分10
8秒前
hrzmlily完成签到,获得积分10
9秒前
苏瑞完成签到,获得积分10
9秒前
10秒前
咖可乐完成签到,获得积分10
10秒前
勤qin发布了新的文献求助10
11秒前
11秒前
gloval发布了新的文献求助10
11秒前
谦让的萤完成签到 ,获得积分10
12秒前
SG完成签到,获得积分10
12秒前
13秒前
13秒前
医疗搜救犬完成签到 ,获得积分10
13秒前
体贴西装完成签到 ,获得积分10
13秒前
LZH发布了新的文献求助10
13秒前
14秒前
muyassar完成签到,获得积分10
15秒前
Canonical_SMILES完成签到 ,获得积分10
15秒前
英姑应助呆萌的青烟采纳,获得10
15秒前
冷酷的寒天完成签到,获得积分20
16秒前
老猫完成签到,获得积分10
16秒前
晚霞完成签到 ,获得积分10
17秒前
Jasper应助芷莯采纳,获得10
17秒前
zxt发布了新的文献求助10
17秒前
17秒前
充电宝应助小Yang采纳,获得10
19秒前
酷波er应助LZH采纳,获得10
19秒前
19秒前
木木完成签到,获得积分10
19秒前
19秒前
奥利给完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806