Orally Fast-Disintegrating Resveratrol/Cyclodextrin Nanofibrous Films as a Potential Antioxidant Dietary Supplement

白藜芦醇 静电纺丝 纳米纤维 普鲁兰 环糊精 抗氧化剂 溶解度 化学工程 化学 材料科学 核化学 有机化学 聚合物 纳米技术 生物化学 多糖 工程类
作者
Aslı Çelebioğlu,Deniz Tekant,Mehmet Emin Kılıç,Engin Durgun,Tamer Uyar
出处
期刊:ACS food science & technology [American Chemical Society]
卷期号:2 (3): 568-580 被引量:20
标识
DOI:10.1021/acsfoodscitech.1c00456
摘要

Encapsulation of dietary supplements into electrospun cyclodextrin (CD) inclusion complex (IC) nanofibers can pave the way for the development of novel delivery systems with orally fast-disintegrating properties. Here, resveratrol/CD-IC nanofibrous films were fabricated using the electrospinning technique. Resveratrol is a well-known bioactive agent with its antioxidant potential, and it is commonly used in the formulation of dietary supplements. Here, the hydroxypropylated (HP-) βCD and γCD were used for both encapsulation of resveratrol and the electrospinning of free-standing nanofibrous films. SEM imaging confirmed the uniform fibrous morphology of electrospun films. The encapsulation and amorphization of resveratrol by inclusion complexation were verified using various techniques including FTIR, 1H NMR, XRD, DSC, TGA, and computational modeling. Besides the results of all these techniques, phase solubility studies also revealed the more favorable complex formation of resveratrol with HPβCD compared to HPγCD. Nanofibrous films were obtained having ∼100% loading efficiency without a loss during the process. The amorphous distribution of resveratrol and the unique properties of nanofibers ensured the fast disintegration of nanofibrous films in the saliva simulation. The enhanced solubility of resveratrol also ensured an improved antioxidant property. The polymeric resveratrol/pullulan nanofibrous film was also formed as a control sample. CD-IC nanofibrous films showed faster disintegration/dissolution, higher/faster release profile, and significantly better antioxidant potential compared to resveratrol/pullulan-based samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
orange发布了新的文献求助20
8秒前
曾泳钧完成签到,获得积分10
8秒前
ben完成签到 ,获得积分10
10秒前
11秒前
科研通AI5应助称心的乘云采纳,获得10
11秒前
12秒前
13秒前
13秒前
tom发布了新的文献求助10
14秒前
SciGPT应助九九九采纳,获得10
14秒前
糊涂的雁易应助阿晴采纳,获得10
15秒前
呼了个呼完成签到,获得积分10
16秒前
16秒前
SciGPT应助老白非采纳,获得10
16秒前
我是老大应助orange采纳,获得10
17秒前
MoCh完成签到,获得积分10
17秒前
18秒前
Tonsil01发布了新的文献求助10
18秒前
ljy1111发布了新的文献求助10
20秒前
Xltox完成签到,获得积分10
21秒前
CodeCraft应助大气的草莓采纳,获得10
22秒前
Liua完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
26秒前
26秒前
26秒前
26秒前
26秒前
年轻契完成签到,获得积分10
27秒前
27秒前
27秒前
28秒前
28秒前
动漫大师发布了新的文献求助10
29秒前
1007完成签到,获得积分20
31秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736171
求助须知:如何正确求助?哪些是违规求助? 3279959
关于积分的说明 10017840
捐赠科研通 2996576
什么是DOI,文献DOI怎么找? 1644187
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749475