A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation

概化理论 学习迁移 计算机科学 深度学习 正规化(语言学) 域适应 人工智能 荷电状态 电池(电) 机器学习 数学 量子力学 分类器(UML) 统计 物理 功率(物理)
作者
Isaiah Oyewole,Abdallah Chehade,Youngki Kim
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118726-118726 被引量:66
标识
DOI:10.1016/j.apenergy.2022.118726
摘要

Deep learning models have been drawing significant attention in the literature of state-of-charge (SOC) estimation because of their capabilities to capture non-trivial temporal patterns. However, most of such models ignore cell-to-cell variations or focus on short-term estimations that are not practical for battery cells with limited charging-discharging history. We propose a Controllable Deep Transfer Learning (CDTL) network for short and long-term SOC estimations at early stages of degradation. The CDTL utilizes shared knowledge between the target cells of interest and historical source cells with rich SOC data using controllable Multiple Domain Adaptation (MDA). Specifically, the CDTL consists of two long-short term memory (LSTM) networks, the source LSTM, and the target LSTM. The source LSTM is trained on SOC data from historical battery cells. The target LSTM is then trained using limited available SOC data from the target cell and the transferred knowledge from the source LSTM using controllable MDA with adaptive regularization. The contributions of the CDTL are two-folded. First, it reduces the likelihood of negative transfer learning using controllable MDA with adaptive regularization, which enhances the target LSTM generalizability for long-term SOC estimation. Second, the CDTL offers theoretical guarantees on the controllability and convergence of transferred knowledge from the source cell to target cell. The experimental results demonstrate that the proposed CDTL outperforms existing deep and transfer learning benchmarks with 1) a maximum improvement of 60% in root-mean-squared error (RMSE) for battery cells with the same chemistry, 2) an average improvement of 50% in RMSE across different battery chemistries, and 3) about 39% reduction in computational time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老刘完成签到,获得积分10
刚刚
等待念之完成签到,获得积分10
1秒前
风不尽,树不静完成签到 ,获得积分10
2秒前
杏仁酥完成签到 ,获得积分10
2秒前
关关完成签到 ,获得积分10
4秒前
搬砖的化学男完成签到 ,获得积分0
6秒前
popo6150完成签到 ,获得积分10
7秒前
卫卫完成签到 ,获得积分10
8秒前
jiaojaioo完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
沉静香氛完成签到 ,获得积分10
12秒前
科科完成签到 ,获得积分10
14秒前
小妮子完成签到,获得积分10
16秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
23秒前
陈雨完成签到,获得积分10
23秒前
煌大河完成签到 ,获得积分10
24秒前
你都至少信我八分吧完成签到 ,获得积分10
27秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
伊yan完成签到 ,获得积分10
31秒前
笨笨听枫完成签到 ,获得积分10
32秒前
36秒前
111111完成签到,获得积分10
37秒前
小小虾完成签到 ,获得积分10
39秒前
忐忑的书桃完成签到 ,获得积分10
39秒前
nusiew完成签到,获得积分10
40秒前
42秒前
laoxie301发布了新的文献求助10
43秒前
44秒前
44秒前
阿拉完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
47秒前
云端步伐发布了新的文献求助10
49秒前
酷炫凡完成签到 ,获得积分10
50秒前
Brenna完成签到 ,获得积分10
52秒前
张图门完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671559
求助须知:如何正确求助?哪些是违规求助? 4919724
关于积分的说明 15134997
捐赠科研通 4830375
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540671
关于科研通互助平台的介绍 1498971