A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation

概化理论 学习迁移 计算机科学 深度学习 正规化(语言学) 域适应 人工智能 荷电状态 电池(电) 机器学习 数学 量子力学 分类器(UML) 统计 物理 功率(物理)
作者
Isaiah Oyewole,Abdallah Chehade,Youngki Kim
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118726-118726 被引量:66
标识
DOI:10.1016/j.apenergy.2022.118726
摘要

Deep learning models have been drawing significant attention in the literature of state-of-charge (SOC) estimation because of their capabilities to capture non-trivial temporal patterns. However, most of such models ignore cell-to-cell variations or focus on short-term estimations that are not practical for battery cells with limited charging-discharging history. We propose a Controllable Deep Transfer Learning (CDTL) network for short and long-term SOC estimations at early stages of degradation. The CDTL utilizes shared knowledge between the target cells of interest and historical source cells with rich SOC data using controllable Multiple Domain Adaptation (MDA). Specifically, the CDTL consists of two long-short term memory (LSTM) networks, the source LSTM, and the target LSTM. The source LSTM is trained on SOC data from historical battery cells. The target LSTM is then trained using limited available SOC data from the target cell and the transferred knowledge from the source LSTM using controllable MDA with adaptive regularization. The contributions of the CDTL are two-folded. First, it reduces the likelihood of negative transfer learning using controllable MDA with adaptive regularization, which enhances the target LSTM generalizability for long-term SOC estimation. Second, the CDTL offers theoretical guarantees on the controllability and convergence of transferred knowledge from the source cell to target cell. The experimental results demonstrate that the proposed CDTL outperforms existing deep and transfer learning benchmarks with 1) a maximum improvement of 60% in root-mean-squared error (RMSE) for battery cells with the same chemistry, 2) an average improvement of 50% in RMSE across different battery chemistries, and 3) about 39% reduction in computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丸子发布了新的文献求助10
1秒前
炙热尔阳完成签到 ,获得积分10
1秒前
华仔应助昏睡的傻姑采纳,获得10
2秒前
5秒前
阳光刺眼发布了新的文献求助10
10秒前
xmx完成签到 ,获得积分10
11秒前
13秒前
小丸子完成签到,获得积分10
13秒前
15秒前
18秒前
雨sunsunsun完成签到 ,获得积分10
18秒前
Sandy完成签到,获得积分10
18秒前
汉堡包应助摸电门的猫采纳,获得10
18秒前
19秒前
BLL发布了新的文献求助80
21秒前
尼i发布了新的文献求助10
21秒前
关关完成签到 ,获得积分10
21秒前
Zlt发布了新的文献求助10
22秒前
LU完成签到 ,获得积分10
22秒前
路痴发布了新的文献求助10
24秒前
26秒前
早睡身体好完成签到,获得积分10
28秒前
激昂的幻梦完成签到,获得积分10
28秒前
Hello应助njusdf采纳,获得10
28秒前
30秒前
沅宝发布了新的文献求助10
31秒前
33秒前
善学以致用应助阳光刺眼采纳,获得10
34秒前
无花果应助Yolen LI采纳,获得10
34秒前
Peri完成签到 ,获得积分10
34秒前
隐形荟发布了新的文献求助10
35秒前
明理吐司发布了新的文献求助10
38秒前
39秒前
卷心小菜狗完成签到,获得积分10
39秒前
40秒前
40秒前
41秒前
东台携玉儿完成签到,获得积分10
42秒前
七七完成签到 ,获得积分10
42秒前
43秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070