A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation

概化理论 学习迁移 计算机科学 深度学习 正规化(语言学) 域适应 人工智能 荷电状态 电池(电) 机器学习 数学 量子力学 分类器(UML) 统计 物理 功率(物理)
作者
Isaiah Oyewole,Abdallah Chehade,Youngki Kim
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118726-118726 被引量:66
标识
DOI:10.1016/j.apenergy.2022.118726
摘要

Deep learning models have been drawing significant attention in the literature of state-of-charge (SOC) estimation because of their capabilities to capture non-trivial temporal patterns. However, most of such models ignore cell-to-cell variations or focus on short-term estimations that are not practical for battery cells with limited charging-discharging history. We propose a Controllable Deep Transfer Learning (CDTL) network for short and long-term SOC estimations at early stages of degradation. The CDTL utilizes shared knowledge between the target cells of interest and historical source cells with rich SOC data using controllable Multiple Domain Adaptation (MDA). Specifically, the CDTL consists of two long-short term memory (LSTM) networks, the source LSTM, and the target LSTM. The source LSTM is trained on SOC data from historical battery cells. The target LSTM is then trained using limited available SOC data from the target cell and the transferred knowledge from the source LSTM using controllable MDA with adaptive regularization. The contributions of the CDTL are two-folded. First, it reduces the likelihood of negative transfer learning using controllable MDA with adaptive regularization, which enhances the target LSTM generalizability for long-term SOC estimation. Second, the CDTL offers theoretical guarantees on the controllability and convergence of transferred knowledge from the source cell to target cell. The experimental results demonstrate that the proposed CDTL outperforms existing deep and transfer learning benchmarks with 1) a maximum improvement of 60% in root-mean-squared error (RMSE) for battery cells with the same chemistry, 2) an average improvement of 50% in RMSE across different battery chemistries, and 3) about 39% reduction in computational time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹什么发布了新的文献求助10
刚刚
1秒前
1秒前
完美世界应助咕噜仔采纳,获得10
1秒前
1秒前
东张张西望望完成签到,获得积分10
1秒前
充电宝应助冲锋的白采纳,获得10
2秒前
2秒前
贝塔超人完成签到,获得积分10
2秒前
2秒前
tian完成签到 ,获得积分10
3秒前
3秒前
执玉发布了新的文献求助10
3秒前
4秒前
李健的小迷弟应助ljy1111采纳,获得10
5秒前
5秒前
年年完成签到,获得积分20
5秒前
6秒前
Lee发布了新的文献求助10
6秒前
7秒前
小学僧发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
无花果应助ST采纳,获得10
8秒前
xx发布了新的文献求助10
8秒前
思源应助郝瑞之采纳,获得10
8秒前
Cyuan发布了新的文献求助10
8秒前
yx发布了新的文献求助10
8秒前
龘勠完成签到 ,获得积分10
8秒前
YTL2021完成签到,获得积分10
9秒前
大大大大管子完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
尔东发布了新的文献求助10
11秒前
11秒前
华仔应助路航采纳,获得10
13秒前
13秒前
zhengzehong完成签到,获得积分10
13秒前
火星上白羊完成签到,获得积分10
13秒前
科研通AI6.1应助哟哟采纳,获得10
13秒前
李程阳完成签到 ,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082