A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation

概化理论 学习迁移 计算机科学 深度学习 正规化(语言学) 域适应 人工智能 荷电状态 电池(电) 机器学习 数学 量子力学 分类器(UML) 统计 物理 功率(物理)
作者
Isaiah Oyewole,Abdallah Chehade,Youngki Kim
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118726-118726 被引量:66
标识
DOI:10.1016/j.apenergy.2022.118726
摘要

Deep learning models have been drawing significant attention in the literature of state-of-charge (SOC) estimation because of their capabilities to capture non-trivial temporal patterns. However, most of such models ignore cell-to-cell variations or focus on short-term estimations that are not practical for battery cells with limited charging-discharging history. We propose a Controllable Deep Transfer Learning (CDTL) network for short and long-term SOC estimations at early stages of degradation. The CDTL utilizes shared knowledge between the target cells of interest and historical source cells with rich SOC data using controllable Multiple Domain Adaptation (MDA). Specifically, the CDTL consists of two long-short term memory (LSTM) networks, the source LSTM, and the target LSTM. The source LSTM is trained on SOC data from historical battery cells. The target LSTM is then trained using limited available SOC data from the target cell and the transferred knowledge from the source LSTM using controllable MDA with adaptive regularization. The contributions of the CDTL are two-folded. First, it reduces the likelihood of negative transfer learning using controllable MDA with adaptive regularization, which enhances the target LSTM generalizability for long-term SOC estimation. Second, the CDTL offers theoretical guarantees on the controllability and convergence of transferred knowledge from the source cell to target cell. The experimental results demonstrate that the proposed CDTL outperforms existing deep and transfer learning benchmarks with 1) a maximum improvement of 60% in root-mean-squared error (RMSE) for battery cells with the same chemistry, 2) an average improvement of 50% in RMSE across different battery chemistries, and 3) about 39% reduction in computational time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xc完成签到,获得积分10
刚刚
废羊羊完成签到 ,获得积分10
刚刚
俏皮不可发布了新的文献求助10
刚刚
ZZ完成签到,获得积分20
刚刚
Jupiter发布了新的文献求助10
1秒前
星辰大海应助坎德拉采纳,获得10
1秒前
独特绣连完成签到,获得积分20
1秒前
hailan发布了新的文献求助10
1秒前
风趣飞柏完成签到,获得积分10
2秒前
miaogu发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
lunky完成签到,获得积分20
3秒前
lililiiii发布了新的文献求助10
4秒前
coffee发布了新的文献求助10
4秒前
荀煜祺完成签到,获得积分10
4秒前
4秒前
幽默千秋发布了新的文献求助10
5秒前
5秒前
慕青应助烂漫的初之采纳,获得10
5秒前
5秒前
5秒前
5秒前
Chen完成签到 ,获得积分10
5秒前
科研鲁宾孙完成签到,获得积分20
5秒前
svaair发布了新的文献求助10
5秒前
5秒前
苦学僧完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090