A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation

概化理论 学习迁移 计算机科学 深度学习 正规化(语言学) 域适应 人工智能 荷电状态 电池(电) 机器学习 数学 量子力学 分类器(UML) 统计 物理 功率(物理)
作者
Isaiah Oyewole,Abdallah Chehade,Youngki Kim
出处
期刊:Applied Energy [Elsevier BV]
卷期号:312: 118726-118726 被引量:66
标识
DOI:10.1016/j.apenergy.2022.118726
摘要

Deep learning models have been drawing significant attention in the literature of state-of-charge (SOC) estimation because of their capabilities to capture non-trivial temporal patterns. However, most of such models ignore cell-to-cell variations or focus on short-term estimations that are not practical for battery cells with limited charging-discharging history. We propose a Controllable Deep Transfer Learning (CDTL) network for short and long-term SOC estimations at early stages of degradation. The CDTL utilizes shared knowledge between the target cells of interest and historical source cells with rich SOC data using controllable Multiple Domain Adaptation (MDA). Specifically, the CDTL consists of two long-short term memory (LSTM) networks, the source LSTM, and the target LSTM. The source LSTM is trained on SOC data from historical battery cells. The target LSTM is then trained using limited available SOC data from the target cell and the transferred knowledge from the source LSTM using controllable MDA with adaptive regularization. The contributions of the CDTL are two-folded. First, it reduces the likelihood of negative transfer learning using controllable MDA with adaptive regularization, which enhances the target LSTM generalizability for long-term SOC estimation. Second, the CDTL offers theoretical guarantees on the controllability and convergence of transferred knowledge from the source cell to target cell. The experimental results demonstrate that the proposed CDTL outperforms existing deep and transfer learning benchmarks with 1) a maximum improvement of 60% in root-mean-squared error (RMSE) for battery cells with the same chemistry, 2) an average improvement of 50% in RMSE across different battery chemistries, and 3) about 39% reduction in computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不吃香菜应助文件撤销了驳回
1秒前
2秒前
FAYE发布了新的文献求助10
2秒前
loong完成签到,获得积分10
2秒前
贪狼先森发布了新的文献求助10
3秒前
yangzhang发布了新的文献求助10
3秒前
3秒前
zhengzehong发布了新的文献求助10
4秒前
5秒前
6秒前
风中道罡发布了新的文献求助10
7秒前
7秒前
8秒前
Eclipseee完成签到,获得积分20
9秒前
9秒前
AiX-zzzzz发布了新的文献求助10
9秒前
阳光的紊应助kj采纳,获得20
10秒前
核桃应助超男采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
FAYE完成签到,获得积分10
13秒前
谢海亮完成签到,获得积分10
13秒前
14秒前
VictorySaber发布了新的文献求助30
16秒前
崔cc发布了新的文献求助10
16秒前
hqq131456发布了新的文献求助20
17秒前
17秒前
FashionBoy应助重要的月亮采纳,获得10
20秒前
huhu完成签到,获得积分10
20秒前
21秒前
Cheryl完成签到,获得积分10
23秒前
23秒前
唐雨文完成签到,获得积分20
23秒前
27秒前
27秒前
可爱的函函应助Andrea采纳,获得50
27秒前
www发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019