Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model

逻辑回归 多元统计 计量经济学 电力市场 计算机科学 统计 经济 工程类 数学 电气工程
作者
Luyao Liu,Feifei Bai,Chenyu Su,Cuiping Ma,Ruifeng Yan,Hailong Li,Qie Sun,Ronald Wennersten
出处
期刊:Energy [Elsevier BV]
卷期号:247: 123417-123417 被引量:26
标识
DOI:10.1016/j.energy.2022.123417
摘要

Extreme electricity prices occur with a higher frequency and a larger magnitude in recent years. Accurate forecasting of the occurrence of extreme prices is of great concern to market operators and participants. This paper aims to forecast the occurrence probability of day-ahead extremely low and high electricity prices and investigate the relative importance of different influencing variables. The data obtained from the Australian National Electricity Market (NEM) were employed, including historical prices (one day before and one week before), reserve capacity, load demand, variable renewable energy (VRE) proportion and interconnector flow. A Multivariate Logistic Regression (MLgR) model was proposed, which showed good forecasting capability in terms of model fitness and classification accuracy with different thresholds of extreme prices. In addition, the performance of the MLgR model was verified by comparing with two other models, i.e., Multi-Layer Perceptron (MLP) and Radical Basis Function (RBF) neural network. Relative importance analysis was performed to quantify of the contribution of the variables. The proposed method enriches the theories of electricity price forecast and advances the understanding of the dynamics of extreme prices. By applying the model in practice, it will contribute to promoting the management of operation and establishment of a robust energy market. • The occurrence of extremely low and high electricity prices was forecasted. • A multivariate logistic regression (MLgR) model was proposed to perform the forecast. • Model fitness and classification accuracy of the model were evaluated. • The accuracy of MLgR model was verified by comparing with two neural networks. • Relative importance of various variables on extreme prices was quantified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炎炎夏无声完成签到 ,获得积分10
刚刚
TTK完成签到,获得积分10
1秒前
半岛完成签到,获得积分10
2秒前
lalala完成签到,获得积分10
2秒前
汉堡包应助感动三毒采纳,获得10
2秒前
njupt连赛通完成签到,获得积分10
2秒前
3秒前
RYK完成签到 ,获得积分10
3秒前
大胆的元柏应助qjq采纳,获得10
5秒前
大虫子完成签到,获得积分10
5秒前
舒适的晓旋完成签到,获得积分10
6秒前
科研通AI2S应助LDDDGR采纳,获得10
6秒前
mmmmmMM完成签到,获得积分10
7秒前
小丸子完成签到 ,获得积分10
8秒前
季不住完成签到,获得积分10
8秒前
chenhuan发布了新的文献求助10
9秒前
qjq完成签到,获得积分10
9秒前
14秒前
wxxx完成签到,获得积分10
17秒前
感动三毒完成签到,获得积分20
18秒前
天行健完成签到,获得积分10
18秒前
LYSM发布了新的文献求助10
19秒前
chenhuan完成签到,获得积分10
21秒前
Arthur完成签到 ,获得积分10
23秒前
24秒前
饿得咕咕地完成签到,获得积分10
27秒前
罐装冰块完成签到,获得积分10
29秒前
ZoeyD完成签到 ,获得积分10
30秒前
jiya发布了新的文献求助10
31秒前
Rita应助罐装冰块采纳,获得10
32秒前
小鱼儿完成签到,获得积分10
32秒前
34秒前
土大弓虽完成签到 ,获得积分10
35秒前
Jasper应助jiya采纳,获得10
39秒前
小二郎应助哈哈哈哈st采纳,获得10
39秒前
大模型应助无所屌谓采纳,获得10
40秒前
静夜谧思发布了新的文献求助10
40秒前
欢喜板凳完成签到 ,获得积分10
40秒前
忧心的不言完成签到 ,获得积分10
42秒前
YUU完成签到 ,获得积分10
42秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709241
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904478
捐赠科研通 2970255
什么是DOI,文献DOI怎么找? 1629140
邀请新用户注册赠送积分活动 772448
科研通“疑难数据库(出版商)”最低求助积分说明 743806