Dynamic simulation of natural gas pipeline network based on interpretable machine learning model

可解释性 管道(软件) 计算机科学 稳健性(进化) 人工智能 机制(生物学) 网络模型 机器学习 生物化学 基因 认识论 哲学 化学 程序设计语言
作者
Dengji Zhou,Xingyun Jia,Shixi Ma,Tiemin Shao,Dawen Huang,Jiarui Hao,Taotao Li
出处
期刊:Energy [Elsevier]
卷期号:253: 124068-124068 被引量:31
标识
DOI:10.1016/j.energy.2022.124068
摘要

Natural gas pipeline network modeling and simulation is the basis of dispatch and design. Modeling methods based on the mechanistic model have for a long time been facing the problem of multi-parameters and multi-flow patterns that are difficult to determine. Additionally, the method of purely machine learning has the problems of poor interpretability and difficulty in optimizing the model. A novel dynamic simulation method based on an interpretable shortcut Elman network (Shortcut-ENN) model for the pipeline network is proposed. The Shortcut-ENN model is derived from the state space equations. Based on the Shortcut-ENN model, the connection relationship and mechanism characteristics of the pipeline are retained, and an interpretable machine learning pipeline network model is constructed to make up for the lack of mechanism modeling. The model fully adopts the mechanism knowledge and is very suitable for optimization, which greatly improves robustness of the model. Validated and compared with long short-term memory model, the results show that MSE, MAE, R2, and EV of the proposed Shortcut-ENN-based model considering embedded pipeline mechanism and compressor constraints are improved approximately 84.4%, 60.1%, 0.75%, and 53.3%, respectively, and the R2 is about larger than 0.99, and the EV is about less than 0.02.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助limike25采纳,获得10
刚刚
刚刚
StandardR发布了新的文献求助10
1秒前
欣喜代秋完成签到,获得积分10
1秒前
温冰雪应助帮我顺利毕业采纳,获得10
1秒前
丘比特应助lee采纳,获得10
2秒前
JamesPei应助果实采纳,获得10
2秒前
搜集达人应助寂梦采纳,获得10
2秒前
asd给asd的求助进行了留言
3秒前
3秒前
Max发布了新的文献求助10
3秒前
Dengdeng完成签到,获得积分20
6秒前
只A不B应助正直博涛采纳,获得10
6秒前
GGZ发布了新的文献求助10
6秒前
7秒前
哈哈镜发布了新的文献求助10
7秒前
桐桐应助shangqinwang采纳,获得10
7秒前
faye完成签到,获得积分10
7秒前
9秒前
Max完成签到,获得积分10
10秒前
李健的粉丝团团长应助GGZ采纳,获得10
10秒前
丹尼格林发布了新的文献求助20
11秒前
11秒前
11秒前
11秒前
田様应助Lily采纳,获得10
11秒前
12秒前
害羞的妙海完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
封典完成签到,获得积分10
13秒前
14秒前
14秒前
无敌的裤衩完成签到 ,获得积分10
14秒前
Jasper应助lnx采纳,获得10
14秒前
15秒前
延胡索发布了新的文献求助10
15秒前
16秒前
asd驳回了wy.he应助
16秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328859
求助须知:如何正确求助?哪些是违规求助? 2958888
关于积分的说明 8592605
捐赠科研通 2637298
什么是DOI,文献DOI怎么找? 1443433
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656039