Dynamic simulation of natural gas pipeline network based on interpretable machine learning model

可解释性 管道(软件) 计算机科学 稳健性(进化) 人工智能 机制(生物学) 网络模型 机器学习 生物化学 基因 认识论 哲学 化学 程序设计语言
作者
Dengji Zhou,Xingyun Jia,Shixi Ma,Tiemin Shao,Dawen Huang,Jiarui Hao,Taotao Li
出处
期刊:Energy [Elsevier]
卷期号:253: 124068-124068 被引量:31
标识
DOI:10.1016/j.energy.2022.124068
摘要

Natural gas pipeline network modeling and simulation is the basis of dispatch and design. Modeling methods based on the mechanistic model have for a long time been facing the problem of multi-parameters and multi-flow patterns that are difficult to determine. Additionally, the method of purely machine learning has the problems of poor interpretability and difficulty in optimizing the model. A novel dynamic simulation method based on an interpretable shortcut Elman network (Shortcut-ENN) model for the pipeline network is proposed. The Shortcut-ENN model is derived from the state space equations. Based on the Shortcut-ENN model, the connection relationship and mechanism characteristics of the pipeline are retained, and an interpretable machine learning pipeline network model is constructed to make up for the lack of mechanism modeling. The model fully adopts the mechanism knowledge and is very suitable for optimization, which greatly improves robustness of the model. Validated and compared with long short-term memory model, the results show that MSE, MAE, R2, and EV of the proposed Shortcut-ENN-based model considering embedded pipeline mechanism and compressor constraints are improved approximately 84.4%, 60.1%, 0.75%, and 53.3%, respectively, and the R2 is about larger than 0.99, and the EV is about less than 0.02.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凤凰山发布了新的文献求助10
1秒前
1秒前
孔雨珍发布了新的文献求助10
1秒前
淡定的思松应助通~采纳,获得10
2秒前
2秒前
明亮的八宝粥完成签到,获得积分10
2秒前
mayungui发布了新的文献求助10
2秒前
大型海狮完成签到,获得积分10
2秒前
搜集达人应助科研菜鸟采纳,获得10
3秒前
雨天有伞完成签到,获得积分10
3秒前
蕾子发布了新的文献求助10
3秒前
3秒前
zhui发布了新的文献求助10
3秒前
wanci应助jxcandice采纳,获得10
3秒前
factor发布了新的文献求助10
3秒前
4秒前
泊声发布了新的文献求助20
4秒前
narthon完成签到 ,获得积分10
4秒前
梦幻完成签到,获得积分10
4秒前
1604531786完成签到,获得积分10
4秒前
研友_LMNjkn发布了新的文献求助10
5秒前
xiao发布了新的文献求助10
5秒前
ww发布了新的文献求助10
5秒前
6秒前
Olsters发布了新的文献求助10
6秒前
深情安青应助该睡觉啦采纳,获得10
6秒前
6秒前
SEV完成签到,获得积分20
6秒前
愉快迎荷完成签到,获得积分10
7秒前
矮小的聪展完成签到,获得积分10
8秒前
factor完成签到,获得积分10
8秒前
Hello应助李来仪采纳,获得10
9秒前
SEV发布了新的文献求助10
9秒前
9秒前
9秒前
坚强亦丝应助隐形机器猫采纳,获得10
10秒前
小马甲应助SCI采纳,获得10
11秒前
老疯智发布了新的文献求助10
11秒前
sweetbearm应助通~采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794