阴极
电解质
阳极
材料科学
氧化还原
电极
化学工程
石墨
锂(药物)
水溶液
金属
电化学
无机化学
化学
复合材料
有机化学
冶金
物理化学
内分泌学
工程类
医学
作者
Jung‐Hui Kim,Ju‐Myung Kim,Seok-Kyu Cho,Nag-Young Kim,Sang‐Young Lee
标识
DOI:10.1038/s41467-022-30112-1
摘要
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI