3D Real Scene Data Collection of Cultural Relics and Historical Sites Based on Digital Image Processing

点云 计算机科学 曲率 人工智能 几何本原 匹配(统计) 计算机视觉 算法 特征(语言学) 几何数据分析 几何造型 几何学 数学 语言学 统计 哲学
作者
Feng Li,Huijun Zhao
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-12 被引量:2
标识
DOI:10.1155/2022/9471720
摘要

Traditional digital geometry mainly focuses on local geometric features such as curvature and normal of 3D models. Although the curvature can describe the geometric curvature of the model surface, these local geometric properties cannot describe the global functional structure and associated properties of the 3D model. The purpose of this paper was to study the accurate splicing of cultural relic fragments based on the intrinsic structural features of the 3D model, such as geometry, texture, and function, whose method is the key to realizing the virtual reconstruction of damaged cultural relics. In this paper, a method for analyzing the intrinsic structure of 3D point cloud data is proposed, the feature representation method of 3D discrete curves and surfaces is studied, and a method for identifying geometric features of 3D point clouds based on the similarity measure of the principal curvature is proposed, which realizes the effective extraction of geometric features of the 3D point cloud model of cultural relics. By calculating the visual curvature distribution of the model under multiscale constraints, the effective extraction of the structural primitives of cultural relics with rich surface noise is realized. The experimental results in this paper show that the initial matching time is 1.416 seconds, the final matching time is 1.555 seconds, the average number of iterations is 13, the average stitching error is 1.7233 mm, and the standard deviation is 1.0265 mm. The experimental data show that the algorithm proposed in this chapter has good convergence characteristics and effectively avoids the divergence phenomenon that is easy to occur in the existing stitching algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助轻歌水越采纳,获得10
刚刚
刚刚
1秒前
Roach完成签到,获得积分10
1秒前
pan完成签到,获得积分10
1秒前
simple发布了新的文献求助10
1秒前
hh完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助西北望采纳,获得10
2秒前
ZYC007完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助apple采纳,获得10
3秒前
cccc完成签到,获得积分10
3秒前
3秒前
springkaka完成签到,获得积分0
4秒前
shy完成签到,获得积分10
4秒前
相爱就永远在一起完成签到,获得积分10
5秒前
李若风完成签到,获得积分10
5秒前
HH完成签到,获得积分10
5秒前
枣核儿完成签到,获得积分10
6秒前
GGbong完成签到 ,获得积分10
6秒前
万能图书馆应助威武的捕采纳,获得10
7秒前
复杂小海豚应助威武的捕采纳,获得10
7秒前
李博士发布了新的文献求助30
7秒前
司徒涟妖完成签到,获得积分10
8秒前
Kay76完成签到,获得积分10
8秒前
CCC完成签到 ,获得积分10
9秒前
疯狂的碧凡完成签到,获得积分10
9秒前
王一博完成签到,获得积分10
10秒前
彭鱼晏发布了新的文献求助30
10秒前
lucia5354完成签到,获得积分10
10秒前
13秒前
13秒前
别先生完成签到,获得积分10
13秒前
duts完成签到 ,获得积分10
14秒前
复杂飞瑶完成签到 ,获得积分10
14秒前
14秒前
烫嘴普通话完成签到,获得积分10
15秒前
15秒前
sky完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565