Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 纯数学 计算机网络 哲学 语言学
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助廿三采纳,获得10
1秒前
泊凉少年发布了新的文献求助10
2秒前
刘__完成签到,获得积分20
3秒前
旦皋发布了新的文献求助20
3秒前
3秒前
张博发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
4秒前
所所应助现代的雅彤采纳,获得10
5秒前
星星发布了新的文献求助10
5秒前
田様应助wuhao0118采纳,获得10
6秒前
6秒前
黑米粥发布了新的文献求助30
6秒前
张真源完成签到,获得积分10
7秒前
JAYhxt发布了新的文献求助10
7秒前
7秒前
7秒前
zllllll发布了新的文献求助10
8秒前
9秒前
阿玥完成签到 ,获得积分10
10秒前
李爱国应助祯元小猫采纳,获得10
11秒前
英俊的铭应助刘__采纳,获得10
11秒前
Hello应助小乔采纳,获得10
12秒前
13秒前
zkc发布了新的文献求助10
13秒前
13秒前
13秒前
LLL发布了新的文献求助30
15秒前
小二郎应助泊凉少年采纳,获得10
15秒前
海河王也完成签到,获得积分10
16秒前
16秒前
cyn发布了新的文献求助10
18秒前
77发布了新的文献求助10
18秒前
19秒前
张书源完成签到,获得积分10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
风中凌旋应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589556
求助须知:如何正确求助?哪些是违规求助? 4674233
关于积分的说明 14792577
捐赠科研通 4628652
什么是DOI,文献DOI怎么找? 2532334
邀请新用户注册赠送积分活动 1500990
关于科研通互助平台的介绍 1468472