亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 语言学 哲学 纯数学 计算机网络
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
1秒前
YBR完成签到 ,获得积分10
1秒前
Xiang发布了新的文献求助20
6秒前
10秒前
Bobo完成签到 ,获得积分10
13秒前
17秒前
吕小软完成签到,获得积分10
18秒前
Wu发布了新的文献求助10
21秒前
简一发布了新的文献求助10
22秒前
23秒前
liruixin发布了新的文献求助10
23秒前
25秒前
Kiki完成签到,获得积分10
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
kento应助科研通管家采纳,获得50
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
null应助科研通管家采纳,获得10
26秒前
27秒前
无情墨镜发布了新的文献求助10
28秒前
辣椒完成签到 ,获得积分10
29秒前
甘草三七完成签到,获得积分10
29秒前
29秒前
keke发布了新的文献求助10
30秒前
34秒前
34秒前
keke完成签到,获得积分10
37秒前
无情墨镜发布了新的文献求助10
38秒前
简一完成签到,获得积分10
39秒前
Risen完成签到 ,获得积分10
39秒前
ding应助你嵙这个期刊没买采纳,获得10
42秒前
44秒前
46秒前
nini完成签到,获得积分10
47秒前
田家溢发布了新的文献求助10
50秒前
gody发布了新的文献求助30
52秒前
53秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041