Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 语言学 哲学 纯数学 计算机网络
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LONG发布了新的文献求助10
2秒前
红烧肉耶发布了新的文献求助10
3秒前
kirazou完成签到,获得积分10
3秒前
lwj完成签到,获得积分10
4秒前
9秒前
共享精神应助自觉的小凝采纳,获得10
13秒前
JamesPei应助琪求好运采纳,获得10
13秒前
14秒前
14秒前
14秒前
guard发布了新的文献求助10
14秒前
Sweety-完成签到 ,获得积分10
15秒前
15秒前
达拉崩吧完成签到,获得积分10
16秒前
童万明完成签到,获得积分20
17秒前
没烦恼完成签到,获得积分10
18秒前
zz完成签到 ,获得积分10
18秒前
Owen应助TingtingGZ采纳,获得10
18秒前
pomfret完成签到 ,获得积分10
20秒前
没烦恼发布了新的文献求助10
22秒前
童万明发布了新的文献求助10
22秒前
阳阳完成签到,获得积分10
23秒前
28秒前
四月是你的谎言完成签到 ,获得积分10
32秒前
王昭完成签到 ,获得积分10
33秒前
112233发布了新的文献求助20
33秒前
34秒前
34秒前
富华路完成签到,获得积分10
35秒前
35秒前
35秒前
壮观青亦完成签到 ,获得积分10
36秒前
祁问儿完成签到 ,获得积分10
37秒前
Ccccn完成签到,获得积分10
37秒前
38秒前
39秒前
不吃香菜发布了新的文献求助30
40秒前
RLV完成签到,获得积分10
40秒前
Shuaibin_Pei发布了新的文献求助10
42秒前
科研混子完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511