Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 语言学 哲学 纯数学 计算机网络
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ai白哥完成签到,获得积分10
1秒前
Owen应助放飞的羊驼采纳,获得10
1秒前
英姑应助周丽萍采纳,获得10
2秒前
小蘑菇应助Kevin采纳,获得10
3秒前
顾矜应助zgsjymysmyy采纳,获得10
4秒前
zrs完成签到,获得积分10
5秒前
lx发布了新的文献求助10
5秒前
充满希望发布了新的文献求助10
5秒前
泽北完成签到 ,获得积分10
6秒前
Hello应助悦耳的傲芙采纳,获得10
6秒前
卡皮巴丘完成签到 ,获得积分10
6秒前
LingC完成签到,获得积分10
7秒前
方方发布了新的文献求助10
7秒前
7秒前
科目三应助程公子采纳,获得10
7秒前
丘比特应助willis采纳,获得10
7秒前
QLLX完成签到,获得积分10
8秒前
8秒前
王123完成签到,获得积分10
8秒前
8秒前
酷波er应助夏侯初采纳,获得10
9秒前
爆米花应助weiwei采纳,获得10
9秒前
烟花应助haoyunlai采纳,获得10
10秒前
今天只做一件事应助monned采纳,获得10
10秒前
Wuhuhu完成签到,获得积分10
10秒前
111发布了新的文献求助10
11秒前
12秒前
直率的元菱完成签到,获得积分10
12秒前
在水一方应助xixi采纳,获得50
12秒前
找呀找完成签到,获得积分10
12秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
wy.he应助科研通管家采纳,获得20
13秒前
科研通AI5应助蒋a5_采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477