Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 语言学 哲学 纯数学 计算机网络
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助我爱看文献采纳,获得10
1秒前
2秒前
左霆完成签到,获得积分10
2秒前
夏天完成签到,获得积分10
3秒前
爆米花应助qqrtqr采纳,获得10
3秒前
斯文败类应助赵哈哈采纳,获得10
3秒前
肥肥关注了科研通微信公众号
7秒前
256完成签到,获得积分10
8秒前
熊仔一百应助zzz采纳,获得100
8秒前
波粒二象性完成签到,获得积分20
9秒前
沙坑应助带志采纳,获得10
9秒前
sylnd126发布了新的文献求助10
10秒前
lulu发布了新的文献求助30
10秒前
zhouxu完成签到,获得积分10
10秒前
bluefire完成签到,获得积分10
10秒前
在水一方应助封志泽采纳,获得100
10秒前
SciGPT应助死磕采纳,获得10
10秒前
10秒前
无私的颤发布了新的文献求助20
11秒前
11秒前
科研通AI2S应助草木采纳,获得10
11秒前
xy完成签到 ,获得积分10
12秒前
13秒前
李长吉发布了新的文献求助10
13秒前
打打应助lv采纳,获得10
14秒前
14秒前
15秒前
高会和发布了新的文献求助10
15秒前
17秒前
哈哈哈哈哈完成签到,获得积分10
18秒前
aaa发布了新的文献求助20
19秒前
20秒前
20秒前
20秒前
20秒前
欢呼败发布了新的文献求助10
20秒前
Ava应助恋雅颖月采纳,获得10
20秒前
小蘑菇应助难过的谷芹采纳,获得10
21秒前
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232