Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 语言学 哲学 纯数学 计算机网络
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugh完成签到,获得积分10
1秒前
shuiyu发布了新的文献求助10
1秒前
黎L完成签到,获得积分10
2秒前
2秒前
3秒前
刘五州发布了新的文献求助10
3秒前
幽默的绿草完成签到,获得积分10
3秒前
Akim应助战舞飞扬采纳,获得10
3秒前
体贴代容发布了新的文献求助10
4秒前
金金发布了新的文献求助10
4秒前
5秒前
脑洞疼应助甜甜戎采纳,获得10
5秒前
5秒前
6秒前
遇见完成签到,获得积分10
6秒前
6秒前
shuiyu完成签到,获得积分10
7秒前
8秒前
轻松问筠完成签到,获得积分10
8秒前
SciGPT应助孙子豪采纳,获得10
9秒前
程smile笑发布了新的文献求助10
9秒前
Mu发布了新的文献求助10
9秒前
陈琳完成签到,获得积分10
10秒前
掠影发布了新的文献求助10
10秒前
10秒前
bkagyin应助ttevi采纳,获得10
11秒前
YYYHKKZN完成签到 ,获得积分10
11秒前
严三笑发布了新的文献求助10
11秒前
多多完成签到,获得积分20
12秒前
12秒前
Evina发布了新的文献求助10
13秒前
13秒前
小二郎应助刘五州采纳,获得10
13秒前
英姑应助合适的楷瑞采纳,获得10
14秒前
慕青应助kate采纳,获得10
14秒前
14秒前
15秒前
15秒前
脑洞疼应助Lylin采纳,获得10
16秒前
小周发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109