清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tunnel Crack Detection With Linear Seam Based on Mixed Attention and Multiscale Feature Fusion

特征(语言学) 计算机科学 嵌入 分割 人工智能 深度学习 纹理(宇宙学) 频道(广播) 维数(图论) 计算机视觉 模式识别(心理学) 图像(数学) 数学 语言学 哲学 纯数学 计算机网络
作者
Qiang Zhou,Zhong Qu,Yan-Xin Li,Fang-Rong Ju
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:37
标识
DOI:10.1109/tim.2022.3184351
摘要

Crack detection techniques have been rapidly developed in recent years due to the rise of deep learning. However, existing methods struggle to produce accurate crack segmentation results because cracks and linear seams on the tunnel lining surface have significant similarities in terms of intensity value and texture features. At the same time, due to the scarcity of data, the existing tunnel lining surface crack detection methods still use multi-step traditional image processing methods for detection, which is inefficient. In this paper, we collect and label a dataset of 200 tunnel lining surface crack images named Tunnel200. For the first time, a deep learning-based method is used to detect cracks in the tunnel lining surface. To deal with the characteristics of crack and linear seam, which mostly present long strip or curved shapes, we propose a Mixed Attention (MA) module by efficient embedding channel and positional information. Unlike common spatial attention that aggregates information throughout space, mixed attention aggregates feature directly along with two directions, height, and width, in the spatial dimension. In this way, the long-range dependence of the crack features can be effectively captured. The proposed MA is simple to incorporate into the network. Meanwhile, we embed it in the traditional U-shape network while employing an efficient multi-scale feature fusion technique to build the Tunnel Crack Detection Network (TCDNet). TCDNet outperforms other crack detection and semantic segmentation methods on the Tunnel200 dataset. Additionally, we evaluate our method on two publicly available crack datasets, Crack500 and DeepCrack, and our method gets superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
小马甲应助科研通管家采纳,获得10
27秒前
30秒前
38秒前
紫熊完成签到,获得积分10
1分钟前
奋斗的小研完成签到,获得积分10
1分钟前
1分钟前
锦城纯契完成签到 ,获得积分10
1分钟前
常有李完成签到,获得积分10
3分钟前
Azure完成签到 ,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
carolsoongmm完成签到,获得积分10
4分钟前
hu完成签到,获得积分20
5分钟前
5分钟前
精明代灵完成签到,获得积分10
5分钟前
精明代灵发布了新的文献求助10
5分钟前
hu发布了新的文献求助10
5分钟前
5分钟前
gwbk完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
kklkimo完成签到,获得积分10
6分钟前
慕青应助erjfuhe采纳,获得10
6分钟前
月军完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
Wenfeifei发布了新的文献求助50
7分钟前
无私雅柏完成签到 ,获得积分10
8分钟前
orixero应助笑点低的斑马采纳,获得10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
Criminology34应助纯真的傲玉采纳,获得10
8分钟前
Criminology34应助纯真的傲玉采纳,获得10
9分钟前
9分钟前
9分钟前
陳.发布了新的文献求助10
9分钟前
10分钟前
bji完成签到,获得积分10
10分钟前
兰球的仙人掌完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864433
关于积分的说明 15107930
捐赠科研通 4823164
什么是DOI,文献DOI怎么找? 2582020
邀请新用户注册赠送积分活动 1536109
关于科研通互助平台的介绍 1494538