High Accuracy in Classifying Endoscopic Severity in Ulcerative Colitis Using Convolutional Neural Network

医学 卷积神经网络 人工智能 溃疡性结肠炎 接收机工作特性 二元分类 限制 模式识别(心理学) 可靠性(半导体) 深度学习 人工神经网络 疾病 机器学习 病理 计算机科学 内科学 工程类 物理 支持向量机 功率(物理) 机械工程 量子力学
作者
Bobby Lo,Zhuoyuan Liu,Flemming Bendtsen,Christian Igel,Ida Vind,Johan Burisch
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:117 (10): 1648-1654 被引量:17
标识
DOI:10.14309/ajg.0000000000001904
摘要

The evaluation of endoscopic disease severity is a crucial component in managing patients with ulcerative colitis (UC). However, endoscopic assessment suffers from substantial intraobserver and interobserver variations, limiting the reliability of individual assessments. Therefore, we aimed to develop a deep learning model capable of distinguishing active from healed mucosa and differentiating between different endoscopic disease severity degrees.One thousand four hundred eighty-four unique endoscopic images from 467 patients were extracted for classification. Two experts classified all images independently of one another according to the Mayo endoscopic subscore (MES). In cases of disagreement, a third expert classified the images. Different convolutional neural networks were considered for automatically classifying UC severity. Five-fold cross-validation was used to develop and select the final model. Afterward, unseen test data sets were used for model evaluation.In the most challenging task-distinguishing between all categories of MES-our final model achieved a test accuracy of 0.84. When evaluating this model on the binary tasks of distinguishing MES 0 vs 1-3 and 0-1 vs 2-3, it achieved accuracies of 0.94 and 0.93 and areas under the receiver operating characteristic curves of 0.997 and 0.998, respectively.We have developed a highly accurate, new, automated way of evaluating endoscopic images from patients with UC. We have demonstrated how our deep learning model is capable of distinguishing between all 4 MES levels of activity. This new automated approach may optimize and standardize the evaluation of disease severity measured by the MES across centers no matter the level of medical expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
mike2012发布了新的文献求助10
2秒前
wannada发布了新的文献求助10
2秒前
Lucas应助CH采纳,获得10
2秒前
3秒前
Sleep关注了科研通微信公众号
4秒前
12345完成签到,获得积分10
5秒前
憨憨发布了新的文献求助10
5秒前
米丸子发布了新的文献求助10
6秒前
Ava应助紫靛橙采纳,获得10
7秒前
诗谙完成签到 ,获得积分20
7秒前
兴尽晚回舟完成签到 ,获得积分10
7秒前
雨忆天下发布了新的文献求助10
9秒前
Orange应助成就大山采纳,获得10
9秒前
9秒前
9秒前
典雅的俊驰应助lkasjdfl采纳,获得10
10秒前
完美世界应助激情的一斩采纳,获得10
11秒前
情怀应助所以采纳,获得10
11秒前
完美世界应助帆帆帆采纳,获得10
11秒前
情怀应助zjspidany采纳,获得30
12秒前
pjs发布了新的文献求助10
13秒前
桐桐应助典雅的俊驰采纳,获得10
13秒前
赫幼蓉完成签到 ,获得积分10
13秒前
充电宝应助小田采纳,获得10
14秒前
prosperp应助surain采纳,获得10
15秒前
思源应助wannada采纳,获得10
15秒前
宇婷完成签到,获得积分10
16秒前
cassie发布了新的文献求助10
17秒前
赢赢赢赢完成签到 ,获得积分10
17秒前
zyc完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
搜集达人应助失眠映真采纳,获得10
18秒前
18秒前
Ava应助维尼采纳,获得10
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301228
求助须知:如何正确求助?哪些是违规求助? 2935961
关于积分的说明 8475259
捐赠科研通 2609583
什么是DOI,文献DOI怎么找? 1424790
科研通“疑难数据库(出版商)”最低求助积分说明 662126
邀请新用户注册赠送积分活动 646117