Metastatic Risk Stratification of 2526 Medullary Thyroid Carcinoma Patients: A Study Based on Surveillance, Epidemiology, and End Results Database

医学 肿瘤科 内科学 人口 转移 流行病学 甲状腺癌 甲状腺 癌症 环境卫生
作者
Minh‐Khang Le,Masataka Kawai,Toru Odate,Huy Gia Vuong,Naoki Oishi,Tetsuo Kondo
出处
期刊:Endocrine Pathology [Springer Nature]
卷期号:33 (3): 348-358 被引量:8
标识
DOI:10.1007/s12022-022-09724-2
摘要

The risk of distant metastasis in medullary thyroid carcinoma (MTC) has not been well studied. Additional evaluation of MTC metastatic risk can be helpful for improving the quality of medical management. Therefore, we conducted a large population study to develop a method to stratify the risk of metastasis at the initial presentation of MTC patients. We collected 3612 MTC patients from the Surveillance, Epidemiology, and End Results (SEER) database, and included 2526 MTC patients in the study after applying exclusion criteria. We selected the most informative variables from a learning cohort of 2019 patients to obtain 1000 models by repetitive random data splicing into training and regularization cohorts. We selected the optimal model and developed a risk table from that model. Our risk table variables consist of age, gender, tumor size, extrathyroidal extension, and lymph node metastasis. The final model showed good calibration when metastatic risk was < 25% and good performance with areas under the curve (AUCs) of 0.81, 0.84, and 0.84 in the training, regularization, and test cohorts, respectively. We performed K-means clustering analysis on the model’s metastatic estimation and determined three risk groups of patients with significant survival differences (p < 0.001). Low-risk patients had 0.88%, 1.3%, and 0.5% while high-risk patients had 19.7%, 15.8%, and 17.8% risk of metastasis in the three cohorts, respectively. The incorporation of our table into the International MTC Grading System (IMTCGS) requires more comprehensive clinicopathological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一衣发布了新的文献求助20
1秒前
可爱的函函应助药学牛马采纳,获得10
1秒前
XM发布了新的文献求助10
1秒前
专注之双完成签到,获得积分10
2秒前
SciGPT应助十一采纳,获得10
2秒前
2秒前
A1234完成签到,获得积分10
3秒前
刘铭晨发布了新的文献求助10
4秒前
孙冉冉完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
大模型应助hhzz采纳,获得10
9秒前
一只智慧喵完成签到,获得积分10
9秒前
科目三应助Fundamental采纳,获得10
10秒前
10秒前
miumiuka发布了新的文献求助10
11秒前
greenPASS666发布了新的文献求助10
12秒前
xuanxuan发布了新的文献求助10
12秒前
zfy发布了新的文献求助10
14秒前
14秒前
14秒前
Maor完成签到,获得积分10
14秒前
白菜发布了新的文献求助10
15秒前
15秒前
16秒前
妮妮完成签到 ,获得积分10
18秒前
18秒前
傲娇的凡旋应助spurs17采纳,获得10
18秒前
长情若魔完成签到,获得积分10
20秒前
XM完成签到,获得积分10
20秒前
20秒前
LQW发布了新的文献求助30
20秒前
大个应助Rrr采纳,获得10
20秒前
21秒前
22秒前
22秒前
24秒前
zfy完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808