Metastatic Risk Stratification of 2526 Medullary Thyroid Carcinoma Patients: A Study Based on Surveillance, Epidemiology, and End Results Database

医学 肿瘤科 内科学 人口 转移 流行病学 甲状腺癌 甲状腺 癌症 环境卫生
作者
Minh‐Khang Le,Masataka Kawai,Toru Odate,Huy Gia Vuong,Naoki Oishi,Tetsuo Kondo
出处
期刊:Endocrine Pathology [Springer Nature]
卷期号:33 (3): 348-358 被引量:9
标识
DOI:10.1007/s12022-022-09724-2
摘要

The risk of distant metastasis in medullary thyroid carcinoma (MTC) has not been well studied. Additional evaluation of MTC metastatic risk can be helpful for improving the quality of medical management. Therefore, we conducted a large population study to develop a method to stratify the risk of metastasis at the initial presentation of MTC patients. We collected 3612 MTC patients from the Surveillance, Epidemiology, and End Results (SEER) database, and included 2526 MTC patients in the study after applying exclusion criteria. We selected the most informative variables from a learning cohort of 2019 patients to obtain 1000 models by repetitive random data splicing into training and regularization cohorts. We selected the optimal model and developed a risk table from that model. Our risk table variables consist of age, gender, tumor size, extrathyroidal extension, and lymph node metastasis. The final model showed good calibration when metastatic risk was < 25% and good performance with areas under the curve (AUCs) of 0.81, 0.84, and 0.84 in the training, regularization, and test cohorts, respectively. We performed K-means clustering analysis on the model’s metastatic estimation and determined three risk groups of patients with significant survival differences (p < 0.001). Low-risk patients had 0.88%, 1.3%, and 0.5% while high-risk patients had 19.7%, 15.8%, and 17.8% risk of metastasis in the three cohorts, respectively. The incorporation of our table into the International MTC Grading System (IMTCGS) requires more comprehensive clinicopathological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苗条一兰完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Jing发布了新的文献求助10
2秒前
2秒前
LJX发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
flyfish完成签到,获得积分10
3秒前
bckl888完成签到,获得积分10
3秒前
3秒前
ww发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ding应助Wanderer采纳,获得10
5秒前
锅包肉爱吃肉完成签到 ,获得积分10
5秒前
HollidayLee完成签到,获得积分10
6秒前
6秒前
默默发布了新的文献求助10
6秒前
zx完成签到,获得积分10
7秒前
王川完成签到,获得积分10
7秒前
bayes111完成签到,获得积分20
7秒前
深情安青应助霍师傅采纳,获得10
8秒前
西鱼发布了新的文献求助10
8秒前
8秒前
Owen应助羊丢丢啊丢丢采纳,获得10
8秒前
旺旺发布了新的文献求助10
9秒前
wangyaofeng发布了新的文献求助10
9秒前
高子懿发布了新的文献求助10
9秒前
Quinn发布了新的文献求助10
9秒前
9秒前
小鹿完成签到,获得积分10
10秒前
c0uVi1完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515