CubeNet: Array-Based Seismic Phase Picking with Deep Learning

跟踪(心理语言学) 重采样 计算机科学 微震 地震道 噪音(视频) 人工神经网络 连贯性(哲学赌博策略) 采样(信号处理) 地震学 算法 地质学 数据挖掘 模式识别(心理学) 人工智能 数学 统计 计算机视觉 滤波器(信号处理) 图像(数学) 哲学 小波 语言学
作者
Guoyi Chen,Junlun Li
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:93 (5): 2554-2569 被引量:12
标识
DOI:10.1785/0220220147
摘要

Abstract In recent years, a variety of deep learning (DL) models for seismic phase picking have attracted considerable attention and are widely adopted in many earthquake monitoring projects. However, most current DL models pick P and S arrivals trace by trace without simultaneously considering the spatial coherence of seismic phases among different stations in a seismic array. In this study, we develop a generalized neural network named CubeNet based on 3D U-Net to properly consider the spatial correlation of individual picks at different stations and thus improve the picking accuracy. To deal with data acquired by irregularly distributed stations, seismic data are first regularized into data cubes, which are then fed into CubeNet to calculate probability distributions of P arrivals, S arrivals, and noise. In addition, a variable trace resampling method for optimizing the differential sampling points between P and S arrivals in a trace for varying array apertures is also proposed to further improve the picking accuracy. CubeNet is trained by 47,000 microseismic data cubes and then tested by three data sets from different arrays with varying apertures and station intervals. It is found that CubeNet is rather resilient to impulsive noise and can avoid misidentifying most of the abnormal picks, which are challenging for the signal-trace based phase picking methods such as PhaseNet. We believe the newly proposed CubeNet is especially suitable for processing seismic data collected by large-N arrays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云锋完成签到,获得积分10
刚刚
奋斗战斗机完成签到,获得积分10
1秒前
SYLH应助干秋白采纳,获得10
1秒前
极意完成签到 ,获得积分10
2秒前
左友铭发布了新的文献求助10
2秒前
2秒前
2秒前
爱听歌雨真完成签到,获得积分10
3秒前
3秒前
Amai发布了新的文献求助20
4秒前
酷酷凤灵发布了新的文献求助10
4秒前
5秒前
风雨1210完成签到,获得积分10
5秒前
抗压兔完成签到 ,获得积分10
5秒前
chillin发布了新的文献求助10
5秒前
阳尧发布了新的文献求助10
6秒前
天天快乐应助troubadourelf采纳,获得10
6秒前
勤恳慕蕊发布了新的文献求助10
7秒前
7秒前
kxy完成签到,获得积分10
10秒前
10秒前
婧婧完成签到 ,获得积分10
10秒前
11秒前
12秒前
左友铭完成签到 ,获得积分10
12秒前
sweetbearm应助通~采纳,获得10
12秒前
AKLIZE完成签到,获得积分10
12秒前
刘大妮完成签到,获得积分10
13秒前
clean完成签到,获得积分20
14秒前
Lucas发布了新的文献求助10
14秒前
14秒前
朴实以松发布了新的文献求助10
14秒前
感谢橘子转发科研通微信,获得积分50
14秒前
围炉煮茶完成签到,获得积分10
15秒前
15秒前
云锋发布了新的文献求助10
16秒前
兴奋的问旋应助务实盼海采纳,获得10
16秒前
李秋静发布了新的文献求助10
16秒前
16秒前
无花果应助cookie采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794