已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CubeNet: Array-Based Seismic Phase Picking with Deep Learning

跟踪(心理语言学) 重采样 计算机科学 微震 地震道 噪音(视频) 人工神经网络 连贯性(哲学赌博策略) 采样(信号处理) 地震学 算法 地质学 数据挖掘 模式识别(心理学) 人工智能 数学 统计 计算机视觉 滤波器(信号处理) 图像(数学) 哲学 小波 语言学
作者
Guoyi Chen,Junlun Li
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:93 (5): 2554-2569 被引量:12
标识
DOI:10.1785/0220220147
摘要

Abstract In recent years, a variety of deep learning (DL) models for seismic phase picking have attracted considerable attention and are widely adopted in many earthquake monitoring projects. However, most current DL models pick P and S arrivals trace by trace without simultaneously considering the spatial coherence of seismic phases among different stations in a seismic array. In this study, we develop a generalized neural network named CubeNet based on 3D U-Net to properly consider the spatial correlation of individual picks at different stations and thus improve the picking accuracy. To deal with data acquired by irregularly distributed stations, seismic data are first regularized into data cubes, which are then fed into CubeNet to calculate probability distributions of P arrivals, S arrivals, and noise. In addition, a variable trace resampling method for optimizing the differential sampling points between P and S arrivals in a trace for varying array apertures is also proposed to further improve the picking accuracy. CubeNet is trained by 47,000 microseismic data cubes and then tested by three data sets from different arrays with varying apertures and station intervals. It is found that CubeNet is rather resilient to impulsive noise and can avoid misidentifying most of the abnormal picks, which are challenging for the signal-trace based phase picking methods such as PhaseNet. We believe the newly proposed CubeNet is especially suitable for processing seismic data collected by large-N arrays.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的珍发布了新的文献求助10
6秒前
6秒前
JeremyKarmazin应助ke888采纳,获得30
7秒前
JJS完成签到,获得积分20
7秒前
9秒前
12秒前
12秒前
13秒前
13秒前
彭于晏应助念安采纳,获得10
14秒前
lxd完成签到 ,获得积分10
16秒前
十三完成签到 ,获得积分10
17秒前
18秒前
chisaki发布了新的文献求助10
18秒前
刻苦丝袜完成签到,获得积分10
18秒前
莫竹雪完成签到 ,获得积分10
20秒前
21秒前
风中的火车完成签到,获得积分20
21秒前
23秒前
sheny1发布了新的文献求助10
23秒前
25秒前
夕沫发布了新的文献求助10
26秒前
大个应助wonder123采纳,获得10
27秒前
28秒前
29秒前
30秒前
念安发布了新的文献求助10
30秒前
31秒前
希望天下0贩的0应助夕沫采纳,获得10
31秒前
33秒前
LiZhao发布了新的文献求助30
34秒前
1DAM发布了新的文献求助10
35秒前
39秒前
1090864628完成签到,获得积分10
39秒前
我不理解完成签到,获得积分10
41秒前
田様应助Marshall采纳,获得10
42秒前
梦想成为高知悍妇完成签到,获得积分10
43秒前
隐形曼青应助echo采纳,获得10
43秒前
43秒前
李爱国应助清爽的珍采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787450
求助须知:如何正确求助?哪些是违规求助? 5699427
关于积分的说明 15472079
捐赠科研通 4915875
什么是DOI,文献DOI怎么找? 2645984
邀请新用户注册赠送积分活动 1593680
关于科研通互助平台的介绍 1547999