A Cascaded Multi-Task Generative Framework for Detecting Aortic Dissection on 3-D Non-Contrast-Enhanced Computed Tomography

计算机断层摄影术 主动脉夹层 计算机科学 任务(项目管理) 对比度(视觉) 人工智能 金标准(测试) 放射科 生成语法 灵敏度(控制系统) 医学 模式识别(心理学) 内科学 主动脉 管理 经济 工程类 电子工程
作者
Xiangyu Xiong,Yan Ding,Chuanqi Sun,Zhuoneng Zhang,Xiuhong Guan,Tianjing Zhang,Hao Chen,Hongyan Liu,Zhangbo Cheng,Lei Zhao,Xiaohai Ma,Guoxi Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5177-5188 被引量:12
标识
DOI:10.1109/jbhi.2022.3190293
摘要

Contrast-enhanced computed tomography (CE-CT) is the gold standard for diagnosing aortic dissection (AD). However, contrast agents can cause allergic reactions or renal failure in some patients. Moreover, AD diagnosis by radiologists using non-contrast-enhanced CT (NCE-CT) images has poor sensitivity. To address this issue, we propose a novel cascaded multi-task generative framework for AD detection using NCE-CT volumes. The framework includes a 3D nnU-Net and a 3D multi-task generative architecture (3D MTGA). Specifically, the 3D nnU-Net was employed to segment aortas from NCE-CT volumes. The 3D MTGA was then employed to simultaneously synthesize CE-CT volumes, segment true & false lumen, and classify the patient as AD or non-AD. A theoretical formulation demonstrated that the 3D MTGA could increase the Jensen–Shannon Divergence (JSD) between AD and non-AD for each NCE-CT volume, thus indirectly improving the AD detection performance. Experiments also showed that the proposed framework could achieve an average accuracy of 0.831, a sensitivity of 0.938, and an F1-score of 0.847 in comparison with seven state-of-the-art classification models used by three radiologists with junior, intermediate, and senior experiences, respectively. The experimental results indicate that the proposed framework obtains superior performance to state-of-the-art models in AD detection. Thus, it has great potential to reduce the misdiagnosis of AD using NCE-CT in clinical practice. The source codes and supplementary materials for our framework are available at https://github.com/yXiangXiong/CMTGF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHAOYUN完成签到 ,获得积分10
刚刚
冰柠檬发布了新的文献求助10
1秒前
天天快乐应助陈sir采纳,获得10
2秒前
Erich发布了新的文献求助10
3秒前
牡丹皮炭发布了新的文献求助10
3秒前
4秒前
4秒前
11111完成签到,获得积分10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
han应助科研通管家采纳,获得10
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
han应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
FIN应助科研通管家采纳,获得30
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
dochx完成签到,获得积分10
10秒前
zzx完成签到,获得积分10
10秒前
茜茜哥哥发布了新的文献求助10
10秒前
11秒前
李智点完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049