Does Empty Nest Elderly Experience More Depressive Symptoms than Non-Empty Nest Elderly? Evidence from Longitudinal Aging Study in India

住所 萧条(经济学) 心理健康 老年学 人口学 焦虑 纵向研究 医学 日常生活活动 心理学 精神科 宏观经济学 病理 社会学 经济
作者
Itishree Nayak,Ankita Siddhanta,Basant Kumar Panda
出处
期刊:Hospital Topics [Taylor & Francis]
卷期号:102 (2): 96-109 被引量:4
标识
DOI:10.1080/00185868.2022.2097970
摘要

India experienced a growing burden of elderly population associated with both physical and mental health challenges. Among the mental health problems, dementia, depression, anxiety and sleep disorder are of significant concern. This present study investigates the association between the types of living arrangement and the mental health of elderly in India. Comparison has been done between empty nest and non-empty nest elderlies. Data from first wave of Longitudinal Aging Study in India (2017–18) has been used. It is a nationally representative data which collected data from over 72,000 individuals aged 45 and above and their spouses irrespective of age. We used the Center for Epidemiological Studies Depression Scale (CES‐D) to measure depression while living arrangement was self-reported by the respondents. Univariate and multivariate analyses were carried out to find significant association of the outcome and independent variables. Among the total elderlies, 11% were from empty nest single households, 20% were from empty nest couple households and others were from the non-empty households. At national level, 30% elderly suffered from depression. It was more among the elderly of empty nest single households (43%), compared to elderly of empty nest couple households (30%) and non-empty nest households (28%). Gender, socio economic status, self-rated health status, financial stability, place of residence plays a crucial role in the experience of depression among the elderlies. Results portray that household structure, especially living arrangement and familial support in old age can be associated with the overall health and wellbeing, more specifically depressive symptoms among the elderly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助早睡早起采纳,获得10
1秒前
我鸡丢了发布了新的文献求助10
1秒前
科研通AI6应助于你无瓜采纳,获得10
1秒前
FashionBoy应助刚睡醒采纳,获得10
2秒前
2秒前
叮当完成签到,获得积分10
3秒前
桐桐应助linshiba_18采纳,获得30
3秒前
陈陈陈完成签到 ,获得积分10
4秒前
苹果发布了新的文献求助10
4秒前
5秒前
6秒前
GG发布了新的文献求助10
7秒前
WB完成签到,获得积分20
7秒前
ding应助量子星尘采纳,获得10
7秒前
8秒前
8秒前
核桃发布了新的文献求助10
8秒前
9秒前
9秒前
阳光发布了新的文献求助10
9秒前
9秒前
烟泽亮完成签到,获得积分10
10秒前
阿龙发布了新的文献求助10
13秒前
852应助量子星尘采纳,获得10
13秒前
我鸡丢了完成签到,获得积分10
13秒前
刚睡醒发布了新的文献求助10
13秒前
13秒前
16秒前
zhaoyinghua发布了新的文献求助10
16秒前
壮观的凝阳完成签到,获得积分20
17秒前
18秒前
丘比特应助日笙采纳,获得10
19秒前
20秒前
完美世界应助阿宋采纳,获得10
20秒前
CipherSage应助Tom47采纳,获得10
21秒前
无花果应助努力的宁采纳,获得10
21秒前
21秒前
sky发布了新的文献求助10
21秒前
香蕉觅云应助小李子采纳,获得10
22秒前
diraczh完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430996
求助须知:如何正确求助?哪些是违规求助? 4544087
关于积分的说明 14190586
捐赠科研通 4462638
什么是DOI,文献DOI怎么找? 2446582
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414576