亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:4
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
aa发布了新的文献求助10
29秒前
George完成签到,获得积分10
42秒前
Criminology34完成签到,获得积分0
51秒前
54秒前
aa完成签到,获得积分10
58秒前
jinn发布了新的文献求助30
59秒前
科研通AI6应助许许许采纳,获得30
1分钟前
jinn完成签到,获得积分20
1分钟前
leclerc完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xiaowei发布了新的文献求助10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
许许许发布了新的文献求助30
1分钟前
厉害嘟大盟牙完成签到 ,获得积分10
2分钟前
乐乐完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
李健的小迷弟应助dyx采纳,获得10
2分钟前
吃葡萄不吐葡萄皮完成签到 ,获得积分10
2分钟前
3分钟前
康康小白杨完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助濮阳灵竹采纳,获得10
3分钟前
3分钟前
3分钟前
鳗鱼海发布了新的文献求助10
3分钟前
dyx发布了新的文献求助10
3分钟前
xiaowei发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
kke完成签到,获得积分10
3分钟前
dyx完成签到,获得积分10
3分钟前
ljx完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019181
求助须知:如何正确求助?哪些是违规求助? 4258289
关于积分的说明 13270848
捐赠科研通 4063064
什么是DOI,文献DOI怎么找? 2222420
邀请新用户注册赠送积分活动 1231485
关于科研通互助平台的介绍 1154509