A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:4
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一发布了新的文献求助10
刚刚
刚刚
爱科学完成签到 ,获得积分10
1秒前
4秒前
生动路人应助闫敬蓉采纳,获得10
6秒前
Transition发布了新的文献求助10
7秒前
9秒前
jszhoucl发布了新的文献求助10
10秒前
慕青应助shiwo110采纳,获得10
12秒前
加贝发布了新的文献求助10
15秒前
生动路人应助南宫书瑶采纳,获得30
20秒前
ding应助Transition采纳,获得10
23秒前
CodeCraft应助我不吃葱采纳,获得10
25秒前
26秒前
jszhoucl完成签到,获得积分20
26秒前
Rondab给Francois的求助进行了留言
27秒前
27秒前
anyig完成签到,获得积分10
28秒前
28秒前
yyyyyxy发布了新的文献求助10
30秒前
32秒前
CipherSage应助hrdcrhf采纳,获得10
32秒前
wen_xxx发布了新的文献求助10
32秒前
情怀应助李李李采纳,获得10
34秒前
CA274ABTFY发布了新的文献求助20
34秒前
steven完成签到 ,获得积分10
34秒前
gwt发布了新的文献求助10
34秒前
wbh发布了新的文献求助10
38秒前
39秒前
11111111完成签到,获得积分10
40秒前
小晚完成签到,获得积分10
40秒前
ann发布了新的文献求助10
41秒前
44秒前
FashionBoy应助皮崇知采纳,获得10
45秒前
闹心发布了新的文献求助10
45秒前
yyyyyxy完成签到,获得积分10
45秒前
孙淼发布了新的文献求助20
47秒前
852应助思维隋采纳,获得10
48秒前
48秒前
sk4ajd发布了新的文献求助100
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644