A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:3
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dagong-xz发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
www完成签到,获得积分10
刚刚
tyk完成签到,获得积分10
1秒前
天天快乐应助Allen224采纳,获得10
1秒前
1秒前
天真的迎天完成签到,获得积分10
2秒前
赘婿应助Aspirin采纳,获得10
2秒前
罖昕夗发布了新的文献求助10
3秒前
3秒前
爆米花应助清秀面包采纳,获得10
4秒前
MING发布了新的文献求助10
4秒前
4秒前
4秒前
神经元完成签到,获得积分10
5秒前
lijiaoyang发布了新的文献求助10
5秒前
系统提示发布了新的文献求助30
5秒前
传奇3应助666采纳,获得10
6秒前
6秒前
6秒前
上官若男应助T77采纳,获得10
9秒前
司空海亦发布了新的文献求助10
9秒前
Masongyang发布了新的文献求助10
10秒前
郭文博发布了新的文献求助10
11秒前
279完成签到,获得积分10
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
哥哥完成签到,获得积分10
11秒前
清秀面包发布了新的文献求助10
15秒前
con完成签到 ,获得积分10
16秒前
yar应助荣胖子回来了采纳,获得10
17秒前
18秒前
kingwill应助tttttqqq采纳,获得20
18秒前
19秒前
lkk完成签到,获得积分10
20秒前
20秒前
SYLH应助sisyphus采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466022
求助须知:如何正确求助?哪些是违规求助? 3058969
关于积分的说明 9064256
捐赠科研通 2749385
什么是DOI,文献DOI怎么找? 1508522
科研通“疑难数据库(出版商)”最低求助积分说明 696945
邀请新用户注册赠送积分活动 696664