亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:4
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
苏震坤发布了新的文献求助10
10秒前
17秒前
18秒前
容若发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
26秒前
情怀应助容若采纳,获得10
39秒前
活力的妙菡完成签到,获得积分20
40秒前
1分钟前
舒服的觅云完成签到,获得积分10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
葛力完成签到,获得积分20
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助葛力采纳,获得10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
Licyan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助爱听歌笑寒采纳,获得10
3分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
3分钟前
4分钟前
容若发布了新的文献求助10
4分钟前
4分钟前
重庆森林发布了新的文献求助10
4分钟前
容若发布了新的文献求助10
4分钟前
重庆森林完成签到,获得积分20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127