A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:4
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑咖啡完成签到,获得积分10
1秒前
虫虫发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
2秒前
wisher完成签到,获得积分10
3秒前
科研通AI2S应助你找谁哇采纳,获得10
3秒前
研友_Zb1rln完成签到,获得积分10
3秒前
科研人完成签到,获得积分10
3秒前
4秒前
归海凡儿完成签到,获得积分10
5秒前
chris chen完成签到,获得积分10
5秒前
windli完成签到,获得积分10
5秒前
易只羊完成签到,获得积分10
5秒前
sugar完成签到,获得积分10
6秒前
6秒前
闪闪的乐蕊完成签到,获得积分10
6秒前
科研小白完成签到,获得积分20
7秒前
7秒前
111发布了新的文献求助20
10秒前
www完成签到 ,获得积分10
11秒前
与一完成签到 ,获得积分10
12秒前
weiweiwu12完成签到,获得积分10
12秒前
SDLC完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
儒雅的巧曼完成签到,获得积分10
15秒前
ran完成签到 ,获得积分10
17秒前
云影cns完成签到 ,获得积分10
18秒前
Clark完成签到,获得积分10
18秒前
喜悦的依琴完成签到,获得积分10
19秒前
天玄完成签到 ,获得积分10
19秒前
哈哈哈完成签到 ,获得积分10
21秒前
22秒前
小李找文献完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
wang完成签到 ,获得积分10
24秒前
Ulrica完成签到,获得积分10
25秒前
冷傲的帽子完成签到 ,获得积分10
26秒前
无极微光应助科研通管家采纳,获得20
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671646
求助须知:如何正确求助?哪些是违规求助? 4920665
关于积分的说明 15135350
捐赠科研通 4830514
什么是DOI,文献DOI怎么找? 2587122
邀请新用户注册赠送积分活动 1540719
关于科研通互助平台的介绍 1499103