亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:4
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助XUAN采纳,获得10
3秒前
饼子发布了新的文献求助10
7秒前
xiaokun完成签到,获得积分20
11秒前
百浪多息应助科研通管家采纳,获得10
12秒前
GingerF应助科研通管家采纳,获得50
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
百浪多息应助科研通管家采纳,获得10
12秒前
13秒前
所所应助fenfen好学采纳,获得10
17秒前
XUAN发布了新的文献求助10
20秒前
iorpi完成签到,获得积分10
21秒前
美好念梦完成签到 ,获得积分10
22秒前
xiaokun发布了新的文献求助10
33秒前
cen完成签到,获得积分10
36秒前
andrele发布了新的文献求助10
43秒前
天选小牛马完成签到 ,获得积分10
50秒前
陶醉的蜜蜂完成签到,获得积分10
54秒前
56秒前
1分钟前
yuxia发布了新的文献求助10
1分钟前
weofihqerg发布了新的文献求助10
1分钟前
可耐的语蕊完成签到,获得积分10
1分钟前
1分钟前
Jasper应助xiaokun采纳,获得10
1分钟前
1分钟前
fenfen好学发布了新的文献求助10
1分钟前
忧虑的访梦完成签到 ,获得积分10
1分钟前
iNk应助电脑桌采纳,获得20
1分钟前
fenfen好学完成签到,获得积分10
1分钟前
电脑桌完成签到,获得积分10
1分钟前
2分钟前
Yolanda发布了新的文献求助20
2分钟前
2818完成签到,获得积分10
2分钟前
饼子发布了新的文献求助10
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
馒头完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371512
关于积分的说明 13612260
捐赠科研通 4223952
什么是DOI,文献DOI怎么找? 2316748
邀请新用户注册赠送积分活动 1315371
关于科研通互助平台的介绍 1264471