ChromosomeNet: A massive dataset enabling benchmarking and building basedlines of clinical chromosome classification

染色体 标杆管理 计算机科学 核型 人工智能 细胞遗传学 染色体分析 数据挖掘 生物 遗传学 基因 业务 营销
作者
Chengchuang Lin,Hanbiao Chen,Jie‐Sheng Huang,Jing Peng,Li Guo,Zhirong Yang,Jiahua Du,Shuangyin Li,Aihua Yin,Gansen Zhao
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:100: 107731-107731 被引量:5
标识
DOI:10.1016/j.compbiolchem.2022.107731
摘要

Chromosome karyotyping analysis is a vital cytogenetics technique for diagnosing genetic and congenital malformations, analyzing gestational and implantation failures, etc. Since the chromosome classification as an essential stage in chromosome karyotype analysis is a highly time-consuming, tedious, and error-prone task, which requires a large amount of manual work of experienced cytogenetics experts. Many deep learning-based methods have been proposed to address the chromosome classification issues. However, two challenges still remain in current chromosome classification methods. First, most existing methods were developed by different private datasets, making these methods difficult to compare with each other on the same base. Second, due to the absence of reproducing details of most existing methods, these methods are difficult to be applied in clinical chromosome classification applications widely. To address the above challenges in the chromosome classification issue, this work builds and publishes a massive clinical dataset. This dataset enables the benchmarking and building chromosome classification baselines suitable for different scenarios. The massive clinical dataset consists of 126,453 privacy preserving G-band chromosome instances from 2763 karyotypes of 408 individuals. To our best knowledge, it is the first work to collect, annotate, and release a publicly available clinical chromosome classification dataset whose data size scale is also over 120,000. Meanwhile, the experimental results show that the proposed dataset can boost performance of existing chromosome classification models at a varied range of degrees, with the highest accuracy improvement by 5.39 % points. Moreover, the best baseline with 99.33 % accuracy reports state-of-the-art classification performance. The clinical dataset and state-of-the-art baselines can be found at https://github.com/CloudDataLab/BenchmarkForChromosomeClassification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊and羊完成签到,获得积分10
6秒前
海荣完成签到,获得积分10
7秒前
小萌兽完成签到 ,获得积分10
7秒前
欣喜的跳跳糖完成签到 ,获得积分10
10秒前
饱满语风完成签到 ,获得积分10
12秒前
15秒前
眼睛大樱桃完成签到,获得积分10
15秒前
16秒前
yangzhen完成签到,获得积分10
16秒前
脚啊啊啊完成签到,获得积分10
16秒前
小文子完成签到,获得积分10
17秒前
wangran_778完成签到 ,获得积分10
20秒前
yangzhen发布了新的文献求助10
20秒前
影像大侠完成签到,获得积分10
20秒前
tt发布了新的文献求助10
21秒前
23秒前
wxxz完成签到,获得积分10
25秒前
conanyangqun完成签到,获得积分10
27秒前
mawenting完成签到 ,获得积分10
29秒前
33秒前
苏夏完成签到 ,获得积分10
33秒前
xyzlancet完成签到,获得积分10
34秒前
文龙完成签到 ,获得积分10
34秒前
昵称完成签到 ,获得积分10
36秒前
嘿嘿完成签到 ,获得积分10
37秒前
Linux2000Pro完成签到,获得积分10
40秒前
wangjinuli完成签到 ,获得积分10
40秒前
人类不宜飞行完成签到 ,获得积分10
43秒前
634301059完成签到 ,获得积分10
43秒前
7788完成签到,获得积分10
46秒前
刚子完成签到 ,获得积分10
46秒前
PeterBeau完成签到 ,获得积分10
47秒前
hqr完成签到,获得积分10
48秒前
hwzhou10完成签到,获得积分10
50秒前
轩少的完成签到 ,获得积分10
51秒前
jia发布了新的文献求助10
57秒前
1分钟前
1分钟前
1分钟前
嬗变的天秤完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440152
求助须知:如何正确求助?哪些是违规求助? 3036560
关于积分的说明 8964213
捐赠科研通 2724779
什么是DOI,文献DOI怎么找? 1494820
科研通“疑难数据库(出版商)”最低求助积分说明 690940
邀请新用户注册赠送积分活动 687426