法拉第效率
阴极
微生物燃料电池
材料科学
催化作用
纳米技术
电极
化学工程
碳纤维
人工光合作用
硅
甲醇
电化学
阳极
化学
光电子学
光催化
有机化学
复合数
工程类
物理化学
复合材料
作者
Jimin Kim,Stefano Cestellos-Blanco,Yue‐xiao Shen,Rong Cai,Peidong Yang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2022-06-17
卷期号:22 (13): 5503-5509
被引量:24
标识
DOI:10.1021/acs.nanolett.2c01576
摘要
Catalytic CO2 conversion to renewable fuel is of utmost importance to establish a carbon-neutral society. Bioelectrochemical CO2 reduction, in which a solid cathode interfaces with CO2-reducing bacteria, represents a promising approach for renewable and sustainable fuel production. The rational design of biocatalysts in the biohybrid system is imperative to effectively reduce CO2 into valuable chemicals. Here, we introduce methanol adapted Sporomusa ovata (S. ovata) to enhance the slow metabolic activity of wild-type microorganisms to our semiconductive silicon nanowires (Si NWs) array for efficient CO2 reduction. The adapted whole-cell catalysts enable an enhancement of CO2 fixation with a superior faradaic efficiency on the poised Si NWs cathode. The synergy of the high-surface-area cathode and the adapted strain achieves a CO2-reducing current density of 0.88 ± 0.11 mA/cm2, which is 2.4-fold higher than the wild-type strain. This new generation of biohybrids using adapted S. ovata also decreases the charge transfer resistance at the cathodic interface and facilitates the faster charge transfer from the solid electrode to bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI