A superior strength-ductility synergy of Al0.1CrFeCoNi high-entropy alloy with fully recrystallized ultrafine grains and annealing twins

材料科学 退火(玻璃) 合金 冶金 复合材料
作者
Jiahao Li,Kejie Lu,Xiaojun Zhao,Xinkai Ma,Fuguo Li,Heng Pan,Jieming Chen
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:131: 185-194 被引量:26
标识
DOI:10.1016/j.jmst.2022.06.003
摘要

• Giant strengthening in Al 0.1 CrFeCoNi by cold rolling and short-time annealing. • Al 0.1 CrFeCoNi possesses yield strength of 885 MPa and uniform elongation of 23.4%. • Ultrafine-grained structure and multiple deformation twins lead to high strength. Grain refinement usually makes the materials stronger, while ductility has a dramatic loss. Here, a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained (UFG) Al 0.1 CrFeCoNi with abundant annealing twins was achieved by cold rolling at room temperature and short-time annealing. The microstructure characterization using electron backscattered scattering diffraction demonstrates that abundant geometrically necessary dislocations (GNDs) gather around the grain boundaries and twin boundaries after tensile deformation. Although coarse-grained (CG) samples undergo a larger plastic deformation than UFG samples, the GND density decreases with grain size ranging from UFG to CG. Transmission electron microscopy results reveal that the annealing twin boundary, which effectively hinders the dislocation slip and stores dislocation in grain interior, and the activation of multiple deformation twins are responsible for the superior strength–ductility synergy and work hardening ability. In addition, the yield strength of fully recrystallized Al 0.1 CrFeCoNi follows a Hall–Petch relationship ( σ y = 24 + 676 d –1/2 ), where d takes into account both grain boundaries and annealing twin boundaries. The strengthening effects of grain boundaries and annealing twin boundaries were also evaluated separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雨夜星空完成签到,获得积分10
刚刚
饱满的半青完成签到 ,获得积分10
1秒前
1秒前
务实盼海发布了新的文献求助10
1秒前
Jouleken完成签到,获得积分10
1秒前
2秒前
zq00完成签到,获得积分10
2秒前
2秒前
斯文败类应助独木舟采纳,获得10
2秒前
易哒哒完成签到,获得积分10
2秒前
CCL应助QXS采纳,获得50
3秒前
大方安白完成签到,获得积分10
3秒前
Xxaaa完成签到,获得积分20
3秒前
张小敏完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
科研通AI2S应助Zhong采纳,获得10
5秒前
yidashi完成签到,获得积分10
5秒前
Kelvin.Tsi完成签到 ,获得积分10
5秒前
Island发布了新的文献求助10
6秒前
hu970发布了新的文献求助10
6秒前
九九发布了新的文献求助10
6秒前
123456完成签到,获得积分10
6秒前
BareBear应助龙妍琳采纳,获得10
6秒前
赘婿应助wary采纳,获得10
7秒前
小蘑菇应助wary采纳,获得10
7秒前
上官若男应助wary采纳,获得10
7秒前
李爱国应助木子采纳,获得10
7秒前
烟花应助马佳凯采纳,获得10
7秒前
7秒前
LYL完成签到,获得积分10
8秒前
8秒前
得意凡人完成签到,获得积分10
8秒前
8秒前
害怕的擎宇完成签到,获得积分10
9秒前
柳絮完成签到,获得积分20
9秒前
10秒前
赫连烙发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762