Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods

预言 过程(计算) 组分(热力学) 计算机科学 预测性维护 分析 预测分析 工程类 数据科学 风险分析(工程) 机器学习 人工智能 数据挖掘 可靠性工程 医学 物理 操作系统 热力学
作者
Carlos Ferreira,Gil Gonçalves
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:63: 550-562 被引量:31
标识
DOI:10.1016/j.jmsy.2022.05.010
摘要

Approaches such as Cyber-Physical Systems (CPS), Internet of Things (IoT), Internet of Services (IoS), and Data Analytics have built a new paradigm called Industry 4.0. It has improved manufacturing efficiency and helped industries to face economic, social, and environmental challenges successfully. Condition-Based Maintenance (CBM) performs machines and components' maintenance routines based on their needs, and Prognostics and Health Management (PHM) monitors components' wear evolution using indicators. PHM is a proactive way of implementing CBM by predicting the Remaining Useful Life (RUL), one of the most important indicators to detect a component's failure before it effectively occurs. RUL can be predicted by historical data or direct data extraction by adopting model-based, data-driven, or hybrid methodologies. Model-based methods are challenging, expensive, and time-consuming to develop in complex equipment due to the need for a lot of prior system knowledge. Data-driven methods have primarily used Machine Learning (ML) approaches. They require little historical data, are less complex and expensive, and are more applicable, providing a trade-off between complexity, cost, precision, and applicability. However, despite the increased use of data-driven methods, several studies have pointed out different challenges to RUL prediction. Some works have proposed solutions from individuals and unconnected work structures to overcome these challenges, and there is still a lack of an explicit framework for general process analysis. Moreover, none of them have correlated the different challenges with each micro-step of the RUL prediction process. This work describes the structures, systems and components approached, and datasets used. Next, it proposes a compact framework for the RUL prediction process. Also, it maps the main challenges of this process and the advantages and drawbacks of the most relevant ML methods. Further, it discusses the operational datasets, the accuracy concern, the use of file log systems in the RUL prediction, and approaches the ML Interpretability (MLI) issue. Finally, it concludes with some future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的盼望完成签到,获得积分10
刚刚
酷波er应助小孙采纳,获得10
刚刚
科研糊涂神完成签到,获得积分10
1秒前
4秒前
bo发布了新的文献求助10
4秒前
4秒前
再见梧桐发布了新的文献求助10
4秒前
lihongjie发布了新的文献求助10
5秒前
Cicy发布了新的文献求助10
5秒前
瞿选葵发布了新的文献求助10
5秒前
6秒前
lrl完成签到 ,获得积分10
7秒前
小美酱发布了新的文献求助10
7秒前
7秒前
酷波er应助花无缺采纳,获得10
7秒前
奔波霸发布了新的文献求助10
9秒前
慕青应助holmes采纳,获得10
9秒前
现代的竺发布了新的文献求助10
10秒前
EMT完成签到 ,获得积分10
12秒前
12秒前
VDC应助9527采纳,获得20
12秒前
13秒前
易生完成签到,获得积分10
15秒前
李健的小迷弟应助pengzh采纳,获得10
16秒前
17秒前
壮观复天完成签到,获得积分10
17秒前
18秒前
zhangz发布了新的文献求助10
21秒前
22秒前
哈哈发布了新的文献求助10
23秒前
bo完成签到,获得积分10
23秒前
holmes发布了新的文献求助10
24秒前
25秒前
泡芙完成签到,获得积分10
25秒前
27秒前
SciGPT应助如果星星开满树采纳,获得10
28秒前
orixero应助奔波霸采纳,获得10
28秒前
GUGU发布了新的文献求助10
29秒前
Cicy完成签到,获得积分10
31秒前
哈哈完成签到,获得积分10
31秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462603
求助须知:如何正确求助?哪些是违规求助? 3056160
关于积分的说明 9050826
捐赠科研通 2745793
什么是DOI,文献DOI怎么找? 1506578
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677