A deep learning-based model improves diagnosis of early gastric cancer under narrow band imaging endoscopy

医学 肝病学 内窥镜检查 诊断准确性 人工智能 放射科 窄带成像 前瞻性队列研究 医学物理学 内科学 计算机科学
作者
Dehua Tang,Muhan Ni,Chang Zheng,Xiwei Ding,Nina Zhang,Tian Yang,Qiang Zhan,Yiwei Fu,Wenjia Liu,Duanming Zhuang,Ying Lv,Guifang Xu,Lei Wang,Xiaoping Zou
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Science+Business Media]
卷期号:36 (10): 7800-7810 被引量:16
标识
DOI:10.1007/s00464-022-09319-2
摘要

Diagnosis of early gastric cancer (EGC) under narrow band imaging endoscopy (NBI) is dependent on expertise and skills. We aimed to elucidate whether artificial intelligence (AI) could diagnose EGC under NBI and evaluate the diagnostic assistance of the AI system.In this retrospective diagnostic study, 21,785 NBI images and 20 videos from five centers were divided into a training dataset (13,151 images, 810 patients), an internal validation dataset (7057 images, 283 patients), four external validation datasets (1577 images, 147 patients), and a video validation dataset (20 videos, 20 patients). All the images were labeled manually and used to train an AI system using You look only once v3 (YOLOv3). Next, the diagnostic performance of the AI system and endoscopists were compared and the diagnostic assistance of the AI system was assessed. The accuracy, sensitivity, specificity, and AUC were primary outcomes.The AI system diagnosed EGCs on validation datasets with AUCs of 0.888-0.951 and diagnosed all the EGCs (100.0%) in video dataset. The AI system achieved better diagnostic performance (accuracy, 93.2%, 95% CI, 90.0-94.9%) than senior (85.9%, 95% CI, 84.2-87.4%) and junior (79.5%, 95% CI, 77.8-81.0%) endoscopists. The AI system significantly enhanced the performance of endoscopists in senior (89.4%, 95% CI, 87.9-90.7%) and junior (84.9%, 95% CI, 83.4-86.3%) endoscopists.The NBI AI system outperformed the endoscopists and exerted potential assistant impact in EGC identification. Prospective validations are needed to evaluate the clinical reinforce of the system in real clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的楷瑞应助王手采纳,获得10
1秒前
糖发人发布了新的文献求助10
1秒前
090完成签到,获得积分10
1秒前
chen发布了新的文献求助10
1秒前
Clyde完成签到,获得积分10
3秒前
3秒前
和谐续完成签到 ,获得积分10
4秒前
大个应助李皓婷采纳,获得10
4秒前
6秒前
chen完成签到,获得积分10
6秒前
Hello应助ylw采纳,获得10
6秒前
7秒前
ChemistryZyh发布了新的文献求助10
7秒前
wensir发布了新的文献求助10
7秒前
端庄千琴完成签到,获得积分10
7秒前
heavennew完成签到,获得积分10
8秒前
9秒前
眼睛大樱桃完成签到,获得积分10
9秒前
Yuantian发布了新的文献求助10
10秒前
学吗你完成签到 ,获得积分10
10秒前
御青白少发布了新的文献求助10
11秒前
无尽夏完成签到,获得积分10
11秒前
Rylee发布了新的文献求助10
13秒前
13秒前
无私的念文完成签到 ,获得积分10
14秒前
充电宝应助Yuantian采纳,获得10
15秒前
水水完成签到,获得积分10
16秒前
sskr发布了新的文献求助10
16秒前
15327432191完成签到 ,获得积分10
17秒前
酷波er应助果汁采纳,获得10
17秒前
善学以致用应助程公子采纳,获得10
17秒前
海阔天空发布了新的文献求助10
17秒前
ChemistryZyh完成签到,获得积分10
18秒前
wensir完成签到,获得积分10
20秒前
斯文败类应助Rylee采纳,获得10
21秒前
养不熟的野猫完成签到,获得积分10
21秒前
sskr完成签到,获得积分10
21秒前
高文强完成签到,获得积分10
22秒前
23秒前
我是老大应助liu采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048