Perilaryngeal-Cranial Functional Muscle Network Differentiates Vocal Tasks: A Multi-Channel sEMG Approach

发声 计算机科学 语音识别 人工智能 模式识别(心理学) 听力学 医学
作者
Rory O' Keeffe,Seyed Yahya Shirazi,Sarmad Mehrdad,Tyler Crosby,Aaron M. Johnson,S. Farokh Atashzar
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 3678-3688 被引量:8
标识
DOI:10.1109/tbme.2022.3175948
摘要

Objective: Objective evaluation of physiological responses using non-invasive methods for the assessment of vocal performance and voice disorders has attracted great interest. This paper, for the first time, aims to implement and evaluate perilaryngeal-cranial functional muscle networks. The study investigates the variations in topographical characteristics of the network and the corresponding ability to differentiate vocal tasks. Method: Twelve surface electromyography (sEMG) signals were collected bilaterally from six perilaryngeal and cranial muscles. Data were collected from eight subjects (four females) without a known history of voice disorders. The proposed muscle network is composed of pairwise coherence between sEMG recordings. The network metrics include (a) network degree and (b) weighted clustering coefficient (WCC). Results: The varied phonation tasks showed the median degree, and WCC of the muscle network ascend monotonically, with a high effect size ( $|r_{rb}|\sim 0.5$ ). Pitch glide, singing, and speech tasks were significantly distinguishable using degree and WCC ( $|r_{rb}|\sim 0.8$ ). Also, pitch glide had the highest degree and WCC among all tasks (degree $>0.7$ , WCC $>0.75$ ). In comparison, classic spectrotemporal measures showed far less effectiveness (max $|r_{rb}|=0.12$ ) in differentiating the vocal tasks. Conclusion: Perilaryngeal-cranial functional muscle network was proposed in this paper. The study showed that the functional muscle network could robustly differentiate the vocal tasks while the classic assessment of muscle activation fails to differentiate. Significance: For the first time, we demonstrate the power of a perilaryngeal-cranial muscle network as a neurophysiological window to vocal performance. In addition, the study also discovers tasks with the highest network involvement, which may be utilized in the future to monitor voice disorders and rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
譬如朝露发布了新的文献求助10
2秒前
Lewis发布了新的文献求助10
2秒前
mouxq发布了新的文献求助10
2秒前
韩立完成签到,获得积分10
2秒前
3秒前
3秒前
浮游应助善良的道消采纳,获得10
3秒前
3秒前
3秒前
chslj发布了新的文献求助10
4秒前
4秒前
科研通AI6应助vera采纳,获得10
4秒前
清脆黑猫完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
科研通AI6应助TIAN采纳,获得10
6秒前
遇见未来完成签到,获得积分10
6秒前
if奖发布了新的文献求助10
7秒前
Suagy应助小羊采纳,获得10
7秒前
江江jy发布了新的文献求助10
7秒前
wanci应助元风采纳,获得10
7秒前
杜大帅完成签到,获得积分10
7秒前
春雨发布了新的文献求助10
7秒前
7秒前
shea应助药石无医采纳,获得10
8秒前
李健应助快乐搞钱hh采纳,获得10
8秒前
8秒前
壮壮女士发布了新的文献求助10
8秒前
8秒前
鲸鱼发布了新的文献求助10
8秒前
8秒前
orixero应助曾经富采纳,获得10
9秒前
chenpiao完成签到,获得积分20
9秒前
FBQZDJG2122完成签到,获得积分10
9秒前
肖慧强完成签到,获得积分10
9秒前
10秒前
10秒前
张全丽完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602994
求助须知:如何正确求助?哪些是违规求助? 4011921
关于积分的说明 12421025
捐赠科研通 3692263
什么是DOI,文献DOI怎么找? 2035522
邀请新用户注册赠送积分活动 1068704
科研通“疑难数据库(出版商)”最低求助积分说明 953232