Perilaryngeal-Cranial Functional Muscle Network Differentiates Vocal Tasks: A Multi-Channel sEMG Approach

发声 计算机科学 语音识别 人工智能 模式识别(心理学) 听力学 医学
作者
Rory O' Keeffe,Seyed Yahya Shirazi,Sarmad Mehrdad,Tyler Crosby,Aaron M. Johnson,S. Farokh Atashzar
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 3678-3688 被引量:8
标识
DOI:10.1109/tbme.2022.3175948
摘要

Objective: Objective evaluation of physiological responses using non-invasive methods for the assessment of vocal performance and voice disorders has attracted great interest. This paper, for the first time, aims to implement and evaluate perilaryngeal-cranial functional muscle networks. The study investigates the variations in topographical characteristics of the network and the corresponding ability to differentiate vocal tasks. Method: Twelve surface electromyography (sEMG) signals were collected bilaterally from six perilaryngeal and cranial muscles. Data were collected from eight subjects (four females) without a known history of voice disorders. The proposed muscle network is composed of pairwise coherence between sEMG recordings. The network metrics include (a) network degree and (b) weighted clustering coefficient (WCC). Results: The varied phonation tasks showed the median degree, and WCC of the muscle network ascend monotonically, with a high effect size ( $|r_{rb}|\sim 0.5$ ). Pitch glide, singing, and speech tasks were significantly distinguishable using degree and WCC ( $|r_{rb}|\sim 0.8$ ). Also, pitch glide had the highest degree and WCC among all tasks (degree $>0.7$ , WCC $>0.75$ ). In comparison, classic spectrotemporal measures showed far less effectiveness (max $|r_{rb}|=0.12$ ) in differentiating the vocal tasks. Conclusion: Perilaryngeal-cranial functional muscle network was proposed in this paper. The study showed that the functional muscle network could robustly differentiate the vocal tasks while the classic assessment of muscle activation fails to differentiate. Significance: For the first time, we demonstrate the power of a perilaryngeal-cranial muscle network as a neurophysiological window to vocal performance. In addition, the study also discovers tasks with the highest network involvement, which may be utilized in the future to monitor voice disorders and rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可研发布了新的文献求助20
1秒前
FashionBoy应助略略略爱采纳,获得10
1秒前
wangbin743发布了新的文献求助10
1秒前
湘文完成签到,获得积分10
2秒前
斯文败类应助Ringobell采纳,获得10
3秒前
4秒前
ss完成签到,获得积分20
5秒前
唐画完成签到,获得积分10
6秒前
Cryo完成签到,获得积分10
6秒前
CipherSage应助火星上的大开采纳,获得10
6秒前
成就觅翠发布了新的文献求助10
8秒前
9秒前
英姑应助哀泣魅影采纳,获得10
10秒前
keyanxiaobai完成签到 ,获得积分10
11秒前
乐乐应助标致的又槐采纳,获得10
11秒前
12秒前
12秒前
998877剑指发布了新的文献求助10
13秒前
13秒前
TTTT完成签到,获得积分10
13秒前
会飞的猪崽子完成签到 ,获得积分10
13秒前
顾矜应助郭元吉采纳,获得10
14秒前
14秒前
打打应助嗷唔一口吃掉采纳,获得10
14秒前
16秒前
TTTT发布了新的文献求助10
17秒前
17秒前
司南应助可研采纳,获得10
19秒前
慕青应助雨曦采纳,获得10
19秒前
21秒前
云宇完成签到,获得积分10
21秒前
22秒前
略略略爱完成签到,获得积分10
23秒前
23秒前
彻底疯狂完成签到 ,获得积分10
24秒前
慕青应助嘻嘻嘻采纳,获得10
24秒前
完美世界应助溜圈吃不胖采纳,获得10
25秒前
脑洞疼应助结实的半双采纳,获得10
25秒前
开朗的油麦菜完成签到,获得积分10
26秒前
26秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270868
求助须知:如何正确求助?哪些是违规求助? 2910250
关于积分的说明 8353025
捐赠科研通 2580746
什么是DOI,文献DOI怎么找? 1403686
科研通“疑难数据库(出版商)”最低求助积分说明 655910
邀请新用户注册赠送积分活动 635279