亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perilaryngeal-Cranial Functional Muscle Network Differentiates Vocal Tasks: A Multi-Channel sEMG Approach

发声 计算机科学 语音识别 人工智能 模式识别(心理学) 听力学 医学
作者
Rory O' Keeffe,Seyed Yahya Shirazi,Sarmad Mehrdad,Tyler Crosby,Aaron M. Johnson,S. Farokh Atashzar
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 3678-3688 被引量:8
标识
DOI:10.1109/tbme.2022.3175948
摘要

Objective: Objective evaluation of physiological responses using non-invasive methods for the assessment of vocal performance and voice disorders has attracted great interest. This paper, for the first time, aims to implement and evaluate perilaryngeal-cranial functional muscle networks. The study investigates the variations in topographical characteristics of the network and the corresponding ability to differentiate vocal tasks. Method: Twelve surface electromyography (sEMG) signals were collected bilaterally from six perilaryngeal and cranial muscles. Data were collected from eight subjects (four females) without a known history of voice disorders. The proposed muscle network is composed of pairwise coherence between sEMG recordings. The network metrics include (a) network degree and (b) weighted clustering coefficient (WCC). Results: The varied phonation tasks showed the median degree, and WCC of the muscle network ascend monotonically, with a high effect size ( $|r_{rb}|\sim 0.5$ ). Pitch glide, singing, and speech tasks were significantly distinguishable using degree and WCC ( $|r_{rb}|\sim 0.8$ ). Also, pitch glide had the highest degree and WCC among all tasks (degree $>0.7$ , WCC $>0.75$ ). In comparison, classic spectrotemporal measures showed far less effectiveness (max $|r_{rb}|=0.12$ ) in differentiating the vocal tasks. Conclusion: Perilaryngeal-cranial functional muscle network was proposed in this paper. The study showed that the functional muscle network could robustly differentiate the vocal tasks while the classic assessment of muscle activation fails to differentiate. Significance: For the first time, we demonstrate the power of a perilaryngeal-cranial muscle network as a neurophysiological window to vocal performance. In addition, the study also discovers tasks with the highest network involvement, which may be utilized in the future to monitor voice disorders and rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助闪火采纳,获得10
1秒前
2秒前
皮卡龙完成签到 ,获得积分10
3秒前
高兴宝贝完成签到 ,获得积分10
7秒前
潇洒的马里奥完成签到,获得积分10
7秒前
123发布了新的文献求助200
8秒前
唐泽雪穗应助科研通管家采纳,获得10
13秒前
andrele应助科研通管家采纳,获得30
13秒前
wop111应助科研通管家采纳,获得20
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
唐泽雪穗应助科研通管家采纳,获得10
13秒前
18秒前
123完成签到,获得积分10
19秒前
19秒前
板栗发布了新的文献求助10
24秒前
乐乐应助王王源采纳,获得10
25秒前
悦耳成风完成签到,获得积分10
26秒前
SciGPT应助尊敬的芷卉采纳,获得10
33秒前
酷炫远山完成签到 ,获得积分10
38秒前
42秒前
青山关注了科研通微信公众号
42秒前
43秒前
pterionGao完成签到 ,获得积分10
43秒前
49秒前
50秒前
王王源完成签到,获得积分10
50秒前
故里完成签到,获得积分10
51秒前
52秒前
53秒前
54秒前
锌小子完成签到,获得积分10
55秒前
量子星尘发布了新的文献求助30
55秒前
王王源发布了新的文献求助10
56秒前
琳666发布了新的文献求助10
57秒前
田様应助gmat50采纳,获得10
57秒前
58秒前
闪火完成签到,获得积分10
59秒前
59秒前
zhang发布了新的文献求助10
1分钟前
Millennial完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052879
求助须知:如何正确求助?哪些是违规求助? 4279796
关于积分的说明 13339949
捐赠科研通 4095340
什么是DOI,文献DOI怎么找? 2241523
邀请新用户注册赠送积分活动 1247835
关于科研通互助平台的介绍 1177241