Deformation and Stresses During Alkali Metal Alloying/Dealloying of Sn-Based Electrodes

材料科学 阳极 脆性 金属间化合物 电化学 冶金 复合材料 电极 化学 合金 物理化学
作者
Pranay Gandharapu,Amartya Mukhopadhyay
出处
期刊:Applied Mechanics Reviews [ASME International]
卷期号:74 (6) 被引量:5
标识
DOI:10.1115/1.4054774
摘要

Abstract Enhancement of energy density and safety aspects of Li-ion cells necessitate the usage of “alloying reaction”-based anode materials in lieu of the presently used intercalation-based graphitic carbon. This becomes even more important for the upcoming Na-ion battery system since graphitic carbon does not intercalate sufficient Na-ions to qualify as an anode material. Among the potential “alloying reaction” based anode materials for Li-ion batteries and beyond (viz., Na-ion, K-ion battery systems), Si and Sn have received the major focus; with the inherently ductile nature of Sn (as against the brittleness of Si) and the considerably better stability in the context of electrochemical Na-/K-storage, of late, tilting the balance somewhat in favor of Sn. Nevertheless, similar to Si and most other “alloying reaction”-based anode materials, Sn also undergoes volume expansion/contraction and phase transformations during alkali metal-ion insertion/removal. These cause stress-induced cracking, pulverization, delamination from current collector, accrued polarization and, thus, fairly rapid capacity fade upon electrochemical cycling. Unlike Si, the aforementioned loss in mechanical integrity is believed to be primarily caused by some of the deleterious first-order phase transformations and concomitant formation of brittle intermetallic phases during the alloying/de-alloying process. Against this backdrop, this review article focuses on aspects related to deformation, stress development and associated failure mechanisms of Sn-based electrodes for alkali-metal ion batteries; eventually establishing correlations between phase assemblage/transformation, stress development, mechanical integrity, electrode composition/architecture and electrochemical behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦颖完成签到,获得积分20
刚刚
沉默的冬寒完成签到 ,获得积分10
1秒前
海科科给海科科的求助进行了留言
1秒前
迅速斑马完成签到,获得积分10
1秒前
百合完成签到 ,获得积分10
1秒前
wanghua完成签到,获得积分10
1秒前
Hello应助13679165979采纳,获得10
2秒前
ni发布了新的文献求助10
4秒前
隐形曼青应助敏感的芷采纳,获得10
4秒前
ybb完成签到,获得积分10
7秒前
7秒前
快乐的伟诚完成签到,获得积分10
9秒前
搜集达人应助大胆夜绿采纳,获得10
9秒前
9秒前
10秒前
辛勤的无血完成签到,获得积分10
13秒前
14秒前
rookie完成签到,获得积分10
14秒前
14秒前
ni完成签到,获得积分10
15秒前
step_stone给step_stone的求助进行了留言
16秒前
16秒前
荒野星辰发布了新的文献求助10
17秒前
敏感的芷完成签到,获得积分20
17秒前
19秒前
19秒前
20秒前
luoshi应助沐风采纳,获得20
20秒前
安南完成签到,获得积分10
20秒前
香蕉冬云完成签到 ,获得积分10
21秒前
自信安荷发布了新的文献求助200
21秒前
鱼雷发布了新的文献求助10
22秒前
兔子发布了新的文献求助10
22秒前
22秒前
田様应助coffee采纳,获得10
23秒前
23秒前
专注鼠标完成签到,获得积分10
23秒前
LingYing完成签到 ,获得积分10
24秒前
cheche完成签到,获得积分10
25秒前
liushun完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824