Deformation and Stresses During Alkali Metal Alloying/Dealloying of Sn-Based Electrodes

材料科学 阳极 脆性 金属间化合物 电化学 冶金 复合材料 电极 化学 合金 物理化学
作者
Pranay Gandharapu,Amartya Mukhopadhyay
出处
期刊:Applied Mechanics Reviews [ASME International]
卷期号:74 (6) 被引量:5
标识
DOI:10.1115/1.4054774
摘要

Abstract Enhancement of energy density and safety aspects of Li-ion cells necessitate the usage of “alloying reaction”-based anode materials in lieu of the presently used intercalation-based graphitic carbon. This becomes even more important for the upcoming Na-ion battery system since graphitic carbon does not intercalate sufficient Na-ions to qualify as an anode material. Among the potential “alloying reaction” based anode materials for Li-ion batteries and beyond (viz., Na-ion, K-ion battery systems), Si and Sn have received the major focus; with the inherently ductile nature of Sn (as against the brittleness of Si) and the considerably better stability in the context of electrochemical Na-/K-storage, of late, tilting the balance somewhat in favor of Sn. Nevertheless, similar to Si and most other “alloying reaction”-based anode materials, Sn also undergoes volume expansion/contraction and phase transformations during alkali metal-ion insertion/removal. These cause stress-induced cracking, pulverization, delamination from current collector, accrued polarization and, thus, fairly rapid capacity fade upon electrochemical cycling. Unlike Si, the aforementioned loss in mechanical integrity is believed to be primarily caused by some of the deleterious first-order phase transformations and concomitant formation of brittle intermetallic phases during the alloying/de-alloying process. Against this backdrop, this review article focuses on aspects related to deformation, stress development and associated failure mechanisms of Sn-based electrodes for alkali-metal ion batteries; eventually establishing correlations between phase assemblage/transformation, stress development, mechanical integrity, electrode composition/architecture and electrochemical behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助松松采纳,获得20
2秒前
hhj完成签到,获得积分20
3秒前
xu完成签到 ,获得积分10
3秒前
8秒前
轨迹给轨迹的求助进行了留言
10秒前
卜念发布了新的文献求助10
14秒前
糟糕的富应助郝宝真采纳,获得10
14秒前
15秒前
15秒前
勿庸完成签到,获得积分10
18秒前
甄道之发布了新的文献求助10
19秒前
安详初蓝发布了新的文献求助50
19秒前
20秒前
hxb完成签到,获得积分10
21秒前
憨憨完成签到 ,获得积分20
21秒前
李健应助晶晶妹妹采纳,获得10
22秒前
yk完成签到 ,获得积分10
24秒前
满意的柏柳完成签到,获得积分10
24秒前
24秒前
王提发布了新的文献求助30
26秒前
杨好圆完成签到,获得积分10
26秒前
细心天德完成签到 ,获得积分10
28秒前
YYY666完成签到,获得积分10
28秒前
一二三木偶人完成签到,获得积分10
29秒前
30秒前
30秒前
稀罕你发布了新的文献求助10
30秒前
Ran完成签到,获得积分10
31秒前
31秒前
xianyu完成签到,获得积分20
31秒前
失眠墨镜完成签到,获得积分10
31秒前
Harry应助科研通管家采纳,获得20
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
陈雷应助科研通管家采纳,获得200
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187