李雅普诺夫函数
凸性
数学
趋同(经济学)
数学优化
应用数学
常微分方程
凸优化
正多边形
凸函数
离散时间和连续时间
微分方程
非线性系统
数学分析
物理
几何学
量子力学
统计
金融经济学
经济
经济增长
作者
Céline Moucer,Adrien Taylor,Francis Bach
出处
期刊:Siam Journal on Optimization
[Society for Industrial and Applied Mathematics]
日期:2023-07-26
卷期号:33 (3): 1558-1586
被引量:6
摘要
First-order methods are often analyzed via their continuous-time models, where their worst-case convergence properties are usually approached via Lyapunov functions.In this work, we provide a systematic and principled approach to find and verify Lyapunov functions for classes of ordinary and stochastic differential equations.More precisely, we extend the performance estimation framework, originally proposed by Drori and Teboulle [14], to continuous-time models.We retrieve convergence results comparable to those of discrete-time methods using fewer assumptions and inequalities, and provide new results for a family of stochastic accelerated gradient flows.
科研通智能强力驱动
Strongly Powered by AbleSci AI