Adolescent behavioral risk analysis and prediction using machine learning: a foundation for precision suicide prevention

自杀意念 支持向量机 机器学习 自杀预防 随机森林 毒物控制 人工智能 自杀未遂 伤害预防 人为因素与人体工程学 心理学 人工神经网络 青少年自杀 职业安全与健康 计算机科学 医学 医疗急救 病理
作者
Yefeng Zheng,Brian D. Christman,Matthew C. Morris,William B. Hillegass,Yunxi Zhang,Kimberly Douglas,Christopher B. Kelly,Lei Zhang
标识
DOI:10.1117/12.2620105
摘要

Suicidal ideation, attempts, and deaths among adolescents are a major and growing health concern. In 2019, suicide accounted for 11% of adolescent deaths in the U.S. (second-leading cause of death among U.S. teenagers). Accurately predicting suicidal thoughts and behaviors (STBs) among adolescents remains challenging. This study aimed to identify the most accurate prediction models for adolescent STBs using machine learning (ML) methods. The predictors were selected by expert-informed and parametric models. The study used the data from Mississippi Youth Risk Behavior Surveillance System (YRBSS). The data were collected from Mississippi public high school students between 2001 and 2019 (inclusive). A broad array of features (survey question responses) were available to train the models including depression, drug use, bullying, violence, online habits, diet, and sports participation. We applied support vector machine (SVM), random forest, and neural network algorithms to the YRBSS data. Suicide ideation (consideration) or suicide attempt are used as the outcome variables. Data-derived ML models performed well in predictive accuracy. These results are compared with three ML algorithms versus three different methods of predictor variable selection. The highest accuracy was achieved with expert-informed models. The accuracy of predicting suicide ideation was slightly higher than the accuracy of suicide attempt. The difference between ML algorithms was insignificant. These prediction models of suicide ideation and attempt may help Mississippi public high schools educators, parents, and policy makers, better target risk behaviors and hence effectively prevent adolescent suicide in Mississippi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
qzj发布了新的文献求助10
刚刚
子车茗应助曾经以亦采纳,获得30
刚刚
刚刚
科研通AI5应助ykkxxd采纳,获得10
1秒前
吉吉完成签到 ,获得积分10
2秒前
老板娘完成签到,获得积分10
2秒前
小何完成签到 ,获得积分10
3秒前
感动的听寒完成签到,获得积分10
4秒前
Jingg完成签到,获得积分10
4秒前
Hh发布了新的文献求助10
5秒前
还好完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得30
6秒前
cdercder应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
hjc完成签到,获得积分10
6秒前
cdercder应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
hans应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703