Identification of Hypoxia-related Genes in Acute Myocardial Infarction using Bioinformatics Analysis

小桶 基因 候选基因 生物信息学 生物 计算生物学 交互网络 基因表达谱 缺氧(环境) 遗传学 基因表达 转录组 化学 有机化学 氧气
作者
Yanqing Wu,Huasong Xia,Yi Chen,Qiang Chen
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:26 (4): 728-742 被引量:2
标识
DOI:10.2174/1386207325666220517110651
摘要

Acute myocardial infarction (AMI) remains one of the most fatal diseases worldwide. Persistent ischemia and hypoxia are implicated as significant mechanisms in the development of AMI. However, no hypoxia-related gene targets of AMI have been identified to date. This study aimed to identify potential genes and drugs for AMI using bioinformatics analysis.Two datasets both related to AMI (GSE76387 and GSE161427) were downloaded from the Gene Expression Omnibus to identify differentially expressed genes (DEGs) between AMI and sham mice. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. A protein-protein interaction (PPI) network was constructed to identify hub genes using Cytoscape. Candidate genes were identified by the intersection of hub genes and hypoxia-related genes. Western blotting was used to validate the candidate genes in the AMI mouse model. Furthermore, the Drug-Gene Interaction Database was used to predict potential therapeutic drugs targeting all hub genes.Fifty-three upregulated and 16 downregulated genes closely related to AMI were identified. The DEGs were primarily enriched in protein, heparin, and integrin binding. KEGG analysis suggested that focal adhesion, PI3K-Akt signaling pathway, and extracellular matrix-receptor interaction are crucial pathways for AMI. The PPI network analysis identified 14 hub genes, two of which were hypoxia-related. Several agents were found to have therapeutic potential for AMI.This study suggests that connective tissue growth factors and the collagen family members may be candidate targets in treating AMI. Agents targeting these candidates may be potential treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助系统提示采纳,获得10
1秒前
1秒前
sss完成签到,获得积分10
1秒前
1秒前
板凳完成签到,获得积分10
2秒前
单纯访枫发布了新的文献求助30
2秒前
bin0920发布了新的文献求助10
2秒前
aaaaaa完成签到,获得积分10
3秒前
tangsuyun完成签到,获得积分20
3秒前
MADKAI发布了新的文献求助50
3秒前
大方小白完成签到,获得积分10
3秒前
xiaokezhang发布了新的文献求助10
3秒前
3秒前
zhenzhen发布了新的文献求助10
4秒前
4秒前
hz_sz完成签到,获得积分10
5秒前
5秒前
空白完成签到,获得积分10
5秒前
所所应助合适苗条采纳,获得10
5秒前
专注易绿完成签到,获得积分10
6秒前
Anne应助吱嗷赵采纳,获得10
6秒前
xin应助666采纳,获得20
7秒前
YY发布了新的文献求助10
7秒前
7秒前
huanhuan完成签到,获得积分10
8秒前
小刘不笨完成签到,获得积分10
8秒前
吕绪特完成签到 ,获得积分10
8秒前
9秒前
愉快的夏菡完成签到,获得积分10
9秒前
研友_gnv61n完成签到,获得积分10
9秒前
zmy完成签到,获得积分10
9秒前
小蘑菇应助守约采纳,获得10
10秒前
10秒前
空白发布了新的文献求助10
11秒前
buno应助721采纳,获得20
11秒前
石阶上完成签到 ,获得积分10
11秒前
du完成签到 ,获得积分10
11秒前
Xu完成签到,获得积分10
12秒前
mmmm完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678