Clinical Characteristics, Prognostic Factor and a Novel Dynamic Prediction Model for Overall Survival of Elderly Patients With Chondrosarcoma: A Population-Based Study

医学 软骨肉瘤 比例危险模型 内科学 人口 生存分析 肿瘤科 外科 计算机科学 环境卫生
作者
Yuexin Tong,Yuekai Cui,Liming Jiang,Yangwei Pi,Yan Gong,Dongxu Zhao
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:14
标识
DOI:10.3389/fpubh.2022.901680
摘要

Background Chondrosarcoma is the most common primary bone sarcoma among elderly population. This study aims to explore independent prognostic factors and develop prediction model in elderly patients with CHS. Methods This study retrospectively analyzed the clinical data of elderly patients diagnosed as CHS between 2004 and 2018 from the Surveillance, Epidemiology, and End Results (SEER) database. We randomly divided enrolled patients into training and validation group, univariate and multivariate Cox regression analyses were used to determine independent prognostic factors. Based on the identified variables, the nomogram was developed and verified to predict the 12-, 24-, and 36-month overall survival (OS) of elderly patients with CHS. A k-fold cross-validation method ( k =10) was performed to validate the newly proposed model. The discrimination, calibration and clinical utility of the nomogram were assessed using the Harrells concordance index (C-index), receiver operating characteristic (ROC) curve and the area under the curve (AUC), calibration curve, decision curve analysis (DCA), the integrated discrimination improvement (IDI) and net reclassification index (NRI). Furthermore, a web-based survival calculator was developed based on the nomogram. Results The study finally included 595 elderly patients with CHS and randomized them into the training group (419 cases) and validation group (176 cases) at a ratio of 7:3. Age, sex, grade, histology, M stage, surgery and tumor size were identified as independent prognostic factors of this population. The novel nomogram displayed excellent predictive performance, which can be accessible by https://nomoresearch.shinyapps.io/elderlywithCHS/ , with a C-index of 0.800 for the training group and 0.789 for the validation group. The value AUC values at 12-, 24-, and 36-month of 0.866, 0.855, and 0.860 in the training group and of 0.839, 0.856, and 0.840 in the validation group, respectively. The calibration curves exhibited good concordance from the predicted survival probabilities to actual observation. The ROC curves, IDI, NRI, and DCA showed the nomogram was superior to the existing AJCC staging system. Conclusion This study developed a novel web-based nomogram for accurately predicting probabilities of OS in elderly patients with CHS, which will contribute to personalized survival assessment and clinical management for elderly patients with CHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
dzh发布了新的文献求助10
3秒前
czw发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
Owen应助小戴采纳,获得10
4秒前
4秒前
Lam完成签到,获得积分10
6秒前
ww发布了新的文献求助10
7秒前
小余发布了新的文献求助10
7秒前
lyn发布了新的文献求助10
7秒前
zho应助林木森采纳,获得50
8秒前
搜集达人应助立军采纳,获得10
8秒前
小糯米发布了新的文献求助10
9秒前
赘婿应助疲惫的砂糖橘采纳,获得10
9秒前
科研通AI2S应助酷酷雨筠采纳,获得10
10秒前
胡卜卜发布了新的文献求助10
10秒前
12秒前
12秒前
cctv18应助chendumo采纳,获得200
12秒前
段翠完成签到 ,获得积分10
13秒前
13秒前
小二郎应助安详的帽子采纳,获得10
13秒前
14秒前
领导范儿应助Marcus采纳,获得10
15秒前
15秒前
15秒前
Doner完成签到,获得积分10
16秒前
废仙儿发布了新的文献求助30
17秒前
zeed发布了新的文献求助10
18秒前
费小曼发布了新的文献求助10
19秒前
深情安青应助小古采纳,获得10
19秒前
王哪跑12发布了新的文献求助10
19秒前
材料诚完成签到,获得积分10
20秒前
心灵美的安雁完成签到,获得积分20
20秒前
20秒前
21秒前
过儿发布了新的文献求助10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247704
求助须知:如何正确求助?哪些是违规求助? 2890987
关于积分的说明 8265665
捐赠科研通 2559215
什么是DOI,文献DOI怎么找? 1388007
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627557