Numerical Modeling of Generation of Landslide Tsunamis: A Review

山崩 计算机科学 地质学 比例(比率) 过程(计算) 泥石流 岩土工程 碎片 地理 海洋学 地图学 操作系统
作者
Cheng-Hsien Lee,Peter H.-Y. Lo,Huabin Shi,Zhenhua Huang
出处
期刊:Journal of Earthquake and Tsunami [World Scientific]
卷期号:16 (06) 被引量:10
标识
DOI:10.1142/s1793431122410019
摘要

Depth-integrated wave models are widely used for simulating large-scale propagation of landslide tsunamis, with the generation of tsunami being simulated separately by various generation models to provide the required initial conditions. For a given problem, the selection of a proper tsunami generation model is an important aspect for tsunami hazard analysis. The generation of tsunamis by submarine or subaerial landslides is a transient multiphase process which involves important fine-scale physics. Depth-integrated generation models, while relatively easy to use, cannot simulate these fine-scale physics. Depth-resolved generation models can overcome the shortcomings of depth-integrated generation models but are computationally demanding. This paper first reviews existing depth-integrated generation models to show the need for depth-resolved generation models. Four classes of depth-resolved generation models are reviewed: computational fluid dynamics (CFD) models, approaches coupling CFD and discrete element method, multiphase flow models, and meshless particle models. Multiphase flow models, which are relatively new, can consider complex interactions between landslide materials and its surrounding fluids. Meshless particle models are appealing for simulating landslide tsunamis because of their convenience to deal with the violent motion of the water surface and ability to run on graphics processing units. The main strengths, weaknesses, and future research directions of the reviewed models are briefly discussed. The literature reviewed, which is by no means complete, aims to provide researchers updated and practical guidelines on numerical modeling techniques for simulating the generation process of landslide tsunamis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁拔蛮吉完成签到 ,获得积分10
1秒前
晓峰完成签到,获得积分20
1秒前
yearluren完成签到,获得积分10
1秒前
peiyy完成签到,获得积分10
1秒前
领导范儿应助TT采纳,获得10
6秒前
清脆代桃完成签到 ,获得积分10
6秒前
科研通AI5应助ghh采纳,获得10
6秒前
叫滚滚发布了新的文献求助10
6秒前
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
8秒前
yeyong11完成签到,获得积分10
11秒前
CodeCraft应助柔弱的鱼采纳,获得30
12秒前
黄可以完成签到,获得积分10
12秒前
美少叔叔完成签到 ,获得积分10
13秒前
心灵美的修洁完成签到 ,获得积分10
14秒前
lzd完成签到,获得积分10
16秒前
17秒前
诸笑白发布了新的文献求助10
19秒前
19秒前
研友_LOK59L完成签到,获得积分10
21秒前
七子完成签到 ,获得积分10
22秒前
郑盼秋完成签到,获得积分10
22秒前
youjiang发布了新的文献求助10
23秒前
25秒前
孤独收割人完成签到,获得积分10
25秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
27秒前
Upupcc发布了新的文献求助10
29秒前
29秒前
勤劳落雁发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
周周发布了新的文献求助10
31秒前
32秒前
科研通AI5应助解青文采纳,获得10
32秒前
科研通AI5应助魏伯安采纳,获得30
32秒前
nekoneko完成签到,获得积分10
35秒前
35秒前
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849