Accurate prediction of epidermal growth factor receptor mutation status in early‐stage lung adenocarcinoma, using radiomics and clinical features

列线图 无线电技术 医学 肿瘤科 腺癌 表皮生长因子受体 阶段(地层学) 内科学 Lasso(编程语言) 回顾性队列研究 队列 肺癌 放射科 癌症 生物 万维网 古生物学 计算机科学
作者
Huanhuan Zhu,Yueqiang Song,Zike Huang,Lian Zhang,Yanqing Chen,Guangyu Tao,Yunlang She,Xuejun Sun,Hong Yu
出处
期刊:Asia-pacific Journal of Clinical Oncology [Wiley]
卷期号:18 (6): 586-594 被引量:5
标识
DOI:10.1111/ajco.13641
摘要

To develop a nomogram based on CT radiomics and clinical features to predict the epidermal growth factor receptor (EGFR) mutations in early-stage lung adenocarcinomas.A retrospective analysis of postoperative patients with pathologically confirmed lung adenocarcinoma, which had been tested for EGFR mutations was performed from January 2015 to December 2015. Patients were randomly assigned to training and validation cohorts. A total of 1,078 radiomics features were extracted. least absolute shrinkage and selection operator (LASSO) regression analysis was applied to select clinical and radiomics features, and to establish predictive models. The radiomics score (rad-score) of each patient was calculated. The discrimination of the model was evaluated with area under the curve.1092 patients (444 men and 648 women; mean age: 59.59±9.6) were enrolled. The radiomics signature consisted of 28 radiomics features and emphysema. The mean validation cohort result of the rad-score for patients with EGFR mutations (0.814±0.988) was significantly higher than those with EGFR wild-type (0.315±1.237; p = 0.001). When combined with clinical features, LASSO regression analysis revealed four radiomics features, emphysema, and three clinical features including sex, age, and histologic subtype as associated with to EGFR mutation status. The nomogram that combined radiomics and clinical features significantly improved the predictive discrimination (AUC: 0.723), which is better than that of the radiomics signature alone (AUC: 0.646).A relationship between selected radiomics features and EGFR mutant lung adenocarcinomas is demonstrated. A nomogram, combining radiomics features and clinical features for EGFR prediction in early-stage lung adenocarcinomas, has shown a moderate discriminatory efficiency and high sensitivity, providing additional information for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逝者如斯只是看着完成签到,获得积分10
2秒前
蒋时晏完成签到,获得积分0
3秒前
xyb完成签到,获得积分10
3秒前
CodeCraft应助ayayaya采纳,获得10
5秒前
科研通AI5应助不吃可可采纳,获得10
5秒前
5秒前
漫步海滩发布了新的文献求助10
6秒前
十一完成签到,获得积分10
6秒前
SYLH应助水牛采纳,获得10
7秒前
LX发布了新的文献求助10
7秒前
8秒前
口腔溃杨完成签到,获得积分10
9秒前
Biofly526完成签到,获得积分10
10秒前
思源应助阳光的芯采纳,获得10
10秒前
12秒前
阿耒发布了新的文献求助10
12秒前
单薄白羊完成签到,获得积分10
12秒前
真实的过客应助Zehn采纳,获得30
13秒前
FashionBoy应助Zehn采纳,获得10
13秒前
ksiswl发布了新的文献求助30
15秒前
15秒前
体贴静竹完成签到 ,获得积分10
16秒前
Pale完成签到,获得积分10
16秒前
漫步海滩完成签到,获得积分20
17秒前
17秒前
寒冷的泽洋完成签到,获得积分10
19秒前
独孤忙发布了新的文献求助10
20秒前
科研通AI5应助霸气的亿先采纳,获得10
21秒前
Samuel发布了新的文献求助30
23秒前
flyia完成签到,获得积分10
23秒前
Zv1k完成签到,获得积分20
24秒前
SYLH应助漫步海滩采纳,获得10
24秒前
28秒前
汉堡包应助欠欠采纳,获得10
28秒前
ylr完成签到,获得积分10
34秒前
777完成签到,获得积分10
35秒前
顾矜应助牟若菱采纳,获得20
36秒前
是霂霂吖发布了新的文献求助10
38秒前
111完成签到,获得积分10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512496
求助须知:如何正确求助?哪些是违规求助? 3094891
关于积分的说明 9225174
捐赠科研通 2789726
什么是DOI,文献DOI怎么找? 1530845
邀请新用户注册赠送积分活动 711128
科研通“疑难数据库(出版商)”最低求助积分说明 706605