Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

洗牌 稳健性(进化) 算法 计算机科学 随机森林 特征(语言学) 人工智能 机器学习 语言学 生物化学 基因 哲学 化学 程序设计语言
作者
Mengrui Zhu,Yun Yang,Xiaobing Feng,Zhengchun Du,Jianguo Yang
出处
期刊:Journal of Intelligent Manufacturing [Springer Science+Business Media]
卷期号:34 (4): 2013-2026 被引量:80
标识
DOI:10.1007/s10845-021-01894-w
摘要

Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beyond发布了新的文献求助10
刚刚
刚刚
Lucas应助Mystic采纳,获得10
1秒前
1秒前
浮游应助金博洋采纳,获得18
1秒前
1秒前
天天快乐应助哈哈王采纳,获得10
2秒前
2秒前
啦啦啦啦啦啦啦完成签到,获得积分10
2秒前
2秒前
呓语完成签到,获得积分10
3秒前
上官若男应助csy采纳,获得10
3秒前
可爱的雨柏完成签到,获得积分10
4秒前
蛙趣完成签到,获得积分10
4秒前
4秒前
果果完成签到,获得积分10
4秒前
yanwowo完成签到,获得积分10
4秒前
5秒前
星星完成签到,获得积分10
5秒前
5秒前
laojian完成签到 ,获得积分10
5秒前
李健应助深情傲柔采纳,获得10
6秒前
栓Q发布了新的文献求助10
6秒前
6秒前
CT民工发布了新的文献求助10
6秒前
mslln发布了新的文献求助10
6秒前
科研完成签到,获得积分20
7秒前
8秒前
PGZ完成签到,获得积分10
8秒前
醒醒完成签到,获得积分10
8秒前
赘婿应助ing采纳,获得10
9秒前
zhou完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
周晓发布了新的文献求助10
10秒前
beyond完成签到,获得积分10
11秒前
11秒前
做饭不咸完成签到,获得积分10
12秒前
无极微光应助木光采纳,获得20
12秒前
13秒前
www发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978