Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

洗牌 稳健性(进化) 算法 计算机科学 随机森林 特征(语言学) 人工智能 机器学习 生物化学 化学 语言学 哲学 基因 程序设计语言
作者
Mengrui Zhu,Yun Yang,Xiaobing Feng,Zhengchun Du,Jianguo Yang
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:34 (4): 2013-2026 被引量:80
标识
DOI:10.1007/s10845-021-01894-w
摘要

Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奇异完成签到 ,获得积分10
刚刚
天tian完成签到,获得积分10
1秒前
漠雨寒灯发布了新的文献求助10
1秒前
科研通AI2S应助沈星燃采纳,获得10
1秒前
汤汤完成签到,获得积分10
2秒前
3秒前
213完成签到,获得积分10
4秒前
4秒前
多毛巨兽完成签到 ,获得积分10
5秒前
Yuan发布了新的文献求助10
5秒前
开朗的慕儿完成签到,获得积分10
6秒前
8秒前
9秒前
9秒前
9秒前
潇涯完成签到 ,获得积分10
10秒前
11秒前
11秒前
xue完成签到,获得积分10
11秒前
谢佳冀完成签到,获得积分10
12秒前
耍酷延恶发布了新的文献求助10
12秒前
651发布了新的文献求助10
13秒前
14秒前
说话的月亮完成签到,获得积分10
14秒前
15秒前
15秒前
谢佳冀发布了新的文献求助10
16秒前
16秒前
Blummer完成签到,获得积分10
16秒前
杨德帅发布了新的文献求助10
17秒前
17秒前
王敬顺完成签到,获得积分0
17秒前
philister完成签到,获得积分10
19秒前
1953完成签到,获得积分10
20秒前
-17完成签到 ,获得积分10
21秒前
kge发布了新的文献求助10
21秒前
chens627发布了新的文献求助10
21秒前
顾矜应助aub采纳,获得10
21秒前
宇文天思完成签到,获得积分10
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345