Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

洗牌 稳健性(进化) 算法 计算机科学 随机森林 特征(语言学) 人工智能 机器学习 语言学 生物化学 基因 哲学 化学 程序设计语言
作者
Mengrui Zhu,Yun Yang,Xiaobing Feng,Zhengchun Du,Jianguo Yang
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:34 (4): 2013-2026 被引量:51
标识
DOI:10.1007/s10845-021-01894-w
摘要

Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
520发布了新的文献求助10
1秒前
Jasper应助上进生采纳,获得10
2秒前
3秒前
闪耀的启明星完成签到,获得积分10
3秒前
大林子完成签到 ,获得积分10
3秒前
4秒前
provence完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
少年与梦发布了新的文献求助10
7秒前
乐乐应助糖豆豆吃豆豆采纳,获得10
8秒前
Orange应助yaoyao采纳,获得10
8秒前
隐形之玉发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
赘婿应助明亮无颜采纳,获得10
13秒前
刘娇娇发布了新的文献求助10
14秒前
852应助第三方斯蒂芬采纳,获得10
15秒前
功夫发布了新的文献求助10
15秒前
17秒前
雪白卿完成签到,获得积分10
18秒前
霜降完成签到 ,获得积分10
18秒前
冲锋的大头菜完成签到,获得积分10
20秒前
vincent完成签到,获得积分10
20秒前
含糊的梦槐完成签到,获得积分10
21秒前
酷炫梦蕊完成签到,获得积分10
21秒前
wf发布了新的文献求助10
22秒前
25秒前
feixiang发布了新的文献求助10
25秒前
28秒前
28秒前
31秒前
yefeng完成签到,获得积分10
32秒前
明亮无颜发布了新的文献求助10
34秒前
称心鸵鸟发布了新的文献求助10
35秒前
一一完成签到,获得积分10
35秒前
35秒前
科研通AI2S应助hhh采纳,获得10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234