Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

洗牌 稳健性(进化) 算法 计算机科学 随机森林 特征(语言学) 人工智能 机器学习 生物化学 化学 语言学 哲学 基因 程序设计语言
作者
Mengrui Zhu,Yun Yang,Xiaobing Feng,Zhengchun Du,Jianguo Yang
出处
期刊:Journal of Intelligent Manufacturing [Springer Science+Business Media]
卷期号:34 (4): 2013-2026 被引量:80
标识
DOI:10.1007/s10845-021-01894-w
摘要

Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qyzhu完成签到,获得积分10
3秒前
gaga完成签到,获得积分10
4秒前
GingerF应助xzy998采纳,获得50
5秒前
SherlockJia完成签到,获得积分10
6秒前
小小怪完成签到 ,获得积分10
6秒前
小城故事完成签到,获得积分10
6秒前
活泼的冬瓜完成签到,获得积分10
6秒前
善善完成签到 ,获得积分10
8秒前
研友_5Z4ZA5完成签到,获得积分10
8秒前
Q清风慕竹完成签到,获得积分10
9秒前
科研通AI6应助丘奇采纳,获得10
9秒前
badgerwithfisher完成签到,获得积分10
10秒前
可玩性完成签到 ,获得积分10
14秒前
行星一只兔完成签到 ,获得积分10
14秒前
shanshan完成签到,获得积分10
15秒前
siqilinwillbephd完成签到,获得积分10
16秒前
陈咪咪完成签到,获得积分10
18秒前
liujianxin发布了新的文献求助10
19秒前
得了MVP完成签到,获得积分10
20秒前
瘦瘦柠檬完成签到,获得积分20
21秒前
叶落无痕、完成签到,获得积分10
22秒前
123完成签到 ,获得积分10
26秒前
炳灿完成签到 ,获得积分10
26秒前
唯为完成签到,获得积分10
27秒前
jiuzhege完成签到 ,获得积分10
27秒前
27秒前
梧桐完成签到 ,获得积分10
27秒前
Akim应助konghusheng采纳,获得10
30秒前
学习完成签到 ,获得积分10
30秒前
31秒前
乐乐妈完成签到,获得积分10
31秒前
阳佟若剑完成签到,获得积分10
32秒前
会飞的猪完成签到,获得积分10
32秒前
爱读文献的小郝完成签到,获得积分10
33秒前
老白完成签到,获得积分10
34秒前
张泽龄完成签到 ,获得积分10
34秒前
李爱国应助liujianxin采纳,获得10
34秒前
bigpluto完成签到,获得积分0
35秒前
悦耳的妙竹完成签到 ,获得积分10
38秒前
阿尔法贝塔完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264