Aspect-level sentiment analysis with aspect-specific context position information

计算机科学 判决 情绪分析 背景(考古学) 自然语言处理 极性(国际关系) 人工智能 词(群论) 代表(政治) 语言学 遗传学 生物 政治 哲学 古生物学 法学 细胞 政治学
作者
Bo Huang,Ruyan Guo,Yimin Zhu,Zhijun Fang,Guojun Zeng,Jin Liu,Yini Wang,Hamido Fujita,Zhicai Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108473-108473 被引量:37
标识
DOI:10.1016/j.knosys.2022.108473
摘要

In recent years, an increasing number of researchers have focused on the aspect-level sentiment analysis in the field of natural language processing. A coarse-grained sentiment analysis at the document level and a sentiment analysis at the sentence level can only judge an entire text comprehensively, whereas a fine-grained sentiment analysis distinguishes each concrete aspect of the text and makes separate judgments on the sentiment polarity. The word vector representation obtained by a recurrent neural network lacks a description of the distance relationship between the context words and aspect, and traditional models rarely consider the influence of the association between contextual sentences. In this paper, we propose an aspect-level sentiment analysis model with aspect-specific contextual location information. By designing two asymmetrical contextual position weight functions respectively, the model adjusts the weight of contextual words according to the positions of the aspect words in the sentences, and alleviates the interference of the difference in the number of words on both sides of the aspect words on the judgment of sentimental polarity. By utilizing single-sentence-level and multiple-sentence-level bidirectional GRU layers, model will extract the influence of the contextual association of each sentence in the document on the aspect sentiment polarity of individual sentences. In addition, we analyze the distribution properties of hard samples and design a novel loss function for the class imbalance problem in the field of sentiment analysis. For dataset 15Rest, the accuracy of our model is 4.27% higher than that of ASGCN, whereas the f1-score, which is more indicative of the classification performance on an imbalanced dataset, can be seen to be improved by 4.31% in comparison to the ASGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张张发布了新的文献求助10
刚刚
轩辕一笑发布了新的文献求助10
1秒前
1秒前
1秒前
奇迹行者发布了新的文献求助30
2秒前
苗条的立果完成签到 ,获得积分10
2秒前
冷静灵竹完成签到,获得积分10
2秒前
小猴儿完成签到,获得积分10
4秒前
4秒前
jin完成签到,获得积分10
5秒前
Seth完成签到,获得积分10
5秒前
5秒前
搜集达人应助KD采纳,获得10
6秒前
6秒前
河堤完成签到,获得积分10
6秒前
KY发布了新的文献求助10
7秒前
StandardR完成签到,获得积分10
7秒前
nyfz2002发布了新的文献求助10
7秒前
无限宛凝完成签到,获得积分10
8秒前
shinysparrow完成签到,获得积分0
8秒前
黄毅完成签到,获得积分10
9秒前
Jasper应助眼睛大的问儿采纳,获得10
9秒前
fdpb完成签到,获得积分10
10秒前
him12完成签到,获得积分10
10秒前
iwersonshmtu完成签到,获得积分10
10秒前
zhazd发布了新的文献求助10
10秒前
河堤发布了新的文献求助10
11秒前
顾矜应助Muya采纳,获得10
11秒前
生而追梦不止完成签到 ,获得积分10
11秒前
早睡早起身体好完成签到 ,获得积分10
11秒前
狄百招完成签到,获得积分0
11秒前
小金鱼完成签到 ,获得积分10
13秒前
英姑应助hh采纳,获得10
14秒前
蒋若风完成签到,获得积分10
14秒前
zs完成签到 ,获得积分10
15秒前
Gao完成签到,获得积分10
15秒前
冷艳的太君完成签到 ,获得积分10
17秒前
tuao234完成签到,获得积分10
17秒前
八戒爱吃人参果完成签到,获得积分10
17秒前
ltf完成签到,获得积分10
17秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207924
求助须知:如何正确求助?哪些是违规求助? 2857239
关于积分的说明 8109598
捐赠科研通 2522840
什么是DOI,文献DOI怎么找? 1356205
科研通“疑难数据库(出版商)”最低求助积分说明 642291
邀请新用户注册赠送积分活动 613736