Data Augmentation and Intelligent Recognition in Pavement Texture Using a Deep Learning

人工智能 计算机科学 深度学习 噪音(视频) 纹理(宇宙学) 试验数据 模式识别(心理学) 随机森林 机器学习 图像(数学) 程序设计语言
作者
Ning Chen,Zijin Xu,Zhuo Liu,Yihan Chen,Yinghao Miao,Qiuhan Li,Yue Hou,Linbing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 25427-25436 被引量:31
标识
DOI:10.1109/tits.2022.3140586
摘要

As one of the most important properties of road, the adaption to roads with different macro-textures may significantly affect the autonomous driving technologies since road texture directly affects the skidding resistance and tire noise. Therefore, it is of great significance to detect and analyze the road macro texture with respect to different pavement types and service conditions. Generally, transportation engineers may face problems such as small dataset size, unbalanced dataset, etc. To solve these problems, this study aims to recognize the pavement texture using the deep learning approaches. The pavement texture data was first visualized using image processing methods, and then augmented using the traditional methods as well as a deep learning approach, i.e. Generative Adversarial Network (GAN) model. The Random Forest (RF) algorithm and the DenseNet network were both employed, where the overall classification accuracy of the original dataset was 50% and 59%, respectively, and the accuracy of the data augmented by the traditional methods was 58% and 70%, respectively. Test results show that, after 250,000 generations of training, GAN model was able to generate new pavement texture images with high quality, and the classification accuracy on the test dataset using DenseNet improved to 82%. It was discovered that the deep learning methods had a better performance for pavement texture recognition than manual classification and traditional machine learning methods. Furthermore, it was also found that adding noise in the original datasets as an augmentation method had a negative impact on the classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
li完成签到 ,获得积分10
刚刚
玛丽发布了新的文献求助20
刚刚
Will完成签到,获得积分10
刚刚
tutu完成签到,获得积分10
1秒前
1秒前
Anthony发布了新的文献求助10
1秒前
含糊的鞋垫完成签到,获得积分10
1秒前
Lucas应助TobyGarfielD采纳,获得10
1秒前
坦率的文龙完成签到,获得积分10
1秒前
贺宁杰完成签到,获得积分10
1秒前
2秒前
2秒前
干净白容发布了新的文献求助10
3秒前
3秒前
Akim应助lzcnextdoor采纳,获得10
3秒前
tutu发布了新的文献求助10
4秒前
torfun发布了新的文献求助10
4秒前
雨林发布了新的文献求助10
5秒前
燕儿应助嗦了蜜采纳,获得10
5秒前
xy发布了新的文献求助30
5秒前
CR完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
sanqian911完成签到,获得积分10
6秒前
何垠禹完成签到,获得积分10
6秒前
长生完成签到 ,获得积分10
6秒前
11111发布了新的文献求助10
6秒前
似水流年完成签到,获得积分10
6秒前
7秒前
落寞易形完成签到,获得积分10
7秒前
liuye0202完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
10秒前
科研通AI5应助torfun采纳,获得10
10秒前
韩程果完成签到 ,获得积分20
10秒前
papi完成签到 ,获得积分10
10秒前
like411发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743