Data Augmentation and Intelligent Recognition in Pavement Texture Using a Deep Learning

人工智能 计算机科学 深度学习 噪音(视频) 纹理(宇宙学) 试验数据 模式识别(心理学) 随机森林 机器学习 图像(数学) 程序设计语言
作者
Ning Chen,Zijin Xu,Zhuo Liu,Yihan Chen,Yinghao Miao,Qiuhan Li,Yue Hou,Linbing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 25427-25436 被引量:31
标识
DOI:10.1109/tits.2022.3140586
摘要

As one of the most important properties of road, the adaption to roads with different macro-textures may significantly affect the autonomous driving technologies since road texture directly affects the skidding resistance and tire noise. Therefore, it is of great significance to detect and analyze the road macro texture with respect to different pavement types and service conditions. Generally, transportation engineers may face problems such as small dataset size, unbalanced dataset, etc. To solve these problems, this study aims to recognize the pavement texture using the deep learning approaches. The pavement texture data was first visualized using image processing methods, and then augmented using the traditional methods as well as a deep learning approach, i.e. Generative Adversarial Network (GAN) model. The Random Forest (RF) algorithm and the DenseNet network were both employed, where the overall classification accuracy of the original dataset was 50% and 59%, respectively, and the accuracy of the data augmented by the traditional methods was 58% and 70%, respectively. Test results show that, after 250,000 generations of training, GAN model was able to generate new pavement texture images with high quality, and the classification accuracy on the test dataset using DenseNet improved to 82%. It was discovered that the deep learning methods had a better performance for pavement texture recognition than manual classification and traditional machine learning methods. Furthermore, it was also found that adding noise in the original datasets as an augmentation method had a negative impact on the classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘静关注了科研通微信公众号
1秒前
2秒前
Csy发布了新的文献求助10
3秒前
十夏发布了新的文献求助10
3秒前
蔡问钰发布了新的文献求助10
3秒前
5秒前
方兴未艾完成签到 ,获得积分10
5秒前
Mason完成签到,获得积分10
5秒前
sss发布了新的文献求助10
6秒前
6秒前
9秒前
平平无奇完成签到,获得积分10
10秒前
kk发布了新的文献求助10
10秒前
12秒前
12秒前
14秒前
lzj001983完成签到,获得积分10
14秒前
完美世界应助蔡问钰采纳,获得10
14秒前
刘静发布了新的文献求助10
16秒前
霖槿完成签到,获得积分10
17秒前
薰硝壤应助伍德采纳,获得10
18秒前
星星发布了新的文献求助10
19秒前
20秒前
20秒前
十夏完成签到,获得积分10
20秒前
Ning发布了新的文献求助10
20秒前
柳易槐发布了新的文献求助10
21秒前
dannnnn发布了新的文献求助10
21秒前
21秒前
张小医完成签到,获得积分10
22秒前
ShowMaker应助LLLLLLLL采纳,获得10
22秒前
23秒前
23秒前
yyyy发布了新的文献求助10
23秒前
quanwangertaiyu完成签到,获得积分20
24秒前
欣慰的冰珍完成签到,获得积分10
24秒前
24秒前
sjyu1985发布了新的文献求助30
25秒前
King发布了新的文献求助10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226