Data Augmentation and Intelligent Recognition in Pavement Texture Using a Deep Learning

人工智能 计算机科学 深度学习 噪音(视频) 纹理(宇宙学) 试验数据 模式识别(心理学) 随机森林 机器学习 图像(数学) 程序设计语言
作者
Ning Chen,Zijin Xu,Zhuo Liu,Yihan Chen,Yinghao Miao,Qiuhan Li,Yue Hou,Linbing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 25427-25436 被引量:31
标识
DOI:10.1109/tits.2022.3140586
摘要

As one of the most important properties of road, the adaption to roads with different macro-textures may significantly affect the autonomous driving technologies since road texture directly affects the skidding resistance and tire noise. Therefore, it is of great significance to detect and analyze the road macro texture with respect to different pavement types and service conditions. Generally, transportation engineers may face problems such as small dataset size, unbalanced dataset, etc. To solve these problems, this study aims to recognize the pavement texture using the deep learning approaches. The pavement texture data was first visualized using image processing methods, and then augmented using the traditional methods as well as a deep learning approach, i.e. Generative Adversarial Network (GAN) model. The Random Forest (RF) algorithm and the DenseNet network were both employed, where the overall classification accuracy of the original dataset was 50% and 59%, respectively, and the accuracy of the data augmented by the traditional methods was 58% and 70%, respectively. Test results show that, after 250,000 generations of training, GAN model was able to generate new pavement texture images with high quality, and the classification accuracy on the test dataset using DenseNet improved to 82%. It was discovered that the deep learning methods had a better performance for pavement texture recognition than manual classification and traditional machine learning methods. Furthermore, it was also found that adding noise in the original datasets as an augmentation method had a negative impact on the classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
niuniu发布了新的文献求助10
1秒前
1秒前
余空发布了新的文献求助20
1秒前
WANG完成签到,获得积分10
2秒前
张玉玲完成签到,获得积分20
3秒前
chizhi完成签到,获得积分10
4秒前
路绪震完成签到,获得积分20
4秒前
李帅完成签到,获得积分10
4秒前
Vesper完成签到,获得积分10
4秒前
1234发布了新的文献求助10
5秒前
科研刘完成签到,获得积分20
6秒前
谷安发布了新的文献求助10
6秒前
6秒前
哦呵呵哈哈啦啦完成签到,获得积分10
6秒前
王骧完成签到,获得积分10
7秒前
tony完成签到,获得积分10
7秒前
我行我素完成签到,获得积分20
7秒前
JamesPei应助程smile笑采纳,获得10
7秒前
牧童完成签到,获得积分10
7秒前
水蜜桃发布了新的文献求助10
8秒前
嫏嬛完成签到,获得积分10
8秒前
研友_VZG7GZ应助司空元正采纳,获得10
8秒前
知足肠乐完成签到,获得积分10
8秒前
jify完成签到,获得积分10
9秒前
Meima完成签到,获得积分10
10秒前
史远哲完成签到,获得积分10
10秒前
BiuBiu怪完成签到,获得积分10
10秒前
angela完成签到,获得积分10
10秒前
典雅的访风完成签到,获得积分10
11秒前
羲和完成签到 ,获得积分10
11秒前
烂漫映秋完成签到,获得积分10
12秒前
wang完成签到,获得积分10
12秒前
12秒前
1234完成签到,获得积分10
12秒前
111发布了新的文献求助10
12秒前
KIKIKI完成签到,获得积分10
14秒前
加油吧少年完成签到,获得积分10
14秒前
16秒前
shiji应助kento采纳,获得50
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874