已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AM³Net: Adaptive Mutual-Learning-Based Multimodal Data Fusion Network

计算机科学 高光谱成像 人工智能 激光雷达 模式识别(心理学) 特征(语言学) 特征提取 传感器融合 测距 相互信息 遥感 语言学 电信 地质学 哲学
作者
Jinping Wang,Jun Li,Yanli Shi,Jianhuang Lai,Xiaojun Tan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5411-5426 被引量:49
标识
DOI:10.1109/tcsvt.2022.3148257
摘要

Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and classification tasks. However, existing methods pay little attention to the specificity of HSI spectral channels and the complementarity of HSI and LiDAR spatial information. In addition, the utilized feature extraction modules tend to consider the feature transmission processes among different modalities independently. Therefore, a new data fusion network named AM 3 Net is proposed for multimodal data classification; it includes three parts. First, an involution operator slides over the input HSI’s spectral channels, which can independently measure the contribution rate of the spectral channel of each pixel to the spectral feature tensor construction. Furthermore, the spatial information of HSI and LiDAR data is integrated and excavated in an adaptively fused, modality-oriented manner. Second, a spectral-spatial mutual-guided module is designed for the feature collaborative transmission among spectral features and spatial information, which can increase the semantic relatedness connection through adaptive, multiscale, and mutual-learning transmission. Finally, the fused spatial-spectral features are embedded into a classification module to obtain the final results, which determines whether to continue updating the network weights. Experimental evaluations on HSI-LiDAR datasets indicate that AM 3 Net possesses a better feature representation ability than the state-of-the-art methods. Additionally, AM 3 Net still maintains considerable performance when its input is replaced with multispectral and synthetic aperture radar data. The result indicates that the proposed data fusion framework is compatible with diversified data types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fareless完成签到 ,获得积分10
2秒前
5秒前
科研通AI2S应助sqHALO采纳,获得10
5秒前
团装完成签到 ,获得积分10
11秒前
liweiDr发布了新的文献求助10
12秒前
Gatita完成签到 ,获得积分10
13秒前
tufei完成签到,获得积分10
15秒前
火星上问柳完成签到,获得积分10
19秒前
19秒前
听风发布了新的文献求助10
21秒前
22秒前
23秒前
天才幸运鱼完成签到,获得积分10
25秒前
优美的冰巧完成签到 ,获得积分10
26秒前
星辰大海应助平淡夏云采纳,获得10
26秒前
dalin发布了新的文献求助10
28秒前
刚子发布了新的文献求助10
28秒前
29秒前
希望天下0贩的0应助Steve采纳,获得10
30秒前
王忠凯发布了新的文献求助10
31秒前
fenmar发布了新的文献求助10
32秒前
炒栗子发布了新的文献求助10
33秒前
可爱的函函应助醒醒采纳,获得10
34秒前
打打应助科研通管家采纳,获得10
35秒前
慕青应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
35秒前
36秒前
疯狂的娃哈哈完成签到 ,获得积分10
37秒前
加菲丰丰应助刚子采纳,获得20
38秒前
Steve发布了新的文献求助10
40秒前
asd发布了新的文献求助10
44秒前
吳凰完成签到 ,获得积分10
44秒前
Steve完成签到,获得积分10
45秒前
ding应助liweiDr采纳,获得10
45秒前
46秒前
乐乐乐乐乐乐应助fenmar采纳,获得10
52秒前
53秒前
乐乐应助炒栗子采纳,获得10
56秒前
56秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139341
求助须知:如何正确求助?哪些是违规求助? 2790257
关于积分的说明 7794680
捐赠科研通 2446703
什么是DOI,文献DOI怎么找? 1301325
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109