已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AM³Net: Adaptive Mutual-Learning-Based Multimodal Data Fusion Network

计算机科学 高光谱成像 人工智能 激光雷达 模式识别(心理学) 特征(语言学) 特征提取 传感器融合 测距 相互信息 遥感 语言学 电信 地质学 哲学
作者
Jinping Wang,Jun Li,Yanli Shi,Jianhuang Lai,Xiaojun Tan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5411-5426 被引量:64
标识
DOI:10.1109/tcsvt.2022.3148257
摘要

Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and classification tasks. However, existing methods pay little attention to the specificity of HSI spectral channels and the complementarity of HSI and LiDAR spatial information. In addition, the utilized feature extraction modules tend to consider the feature transmission processes among different modalities independently. Therefore, a new data fusion network named AM 3 Net is proposed for multimodal data classification; it includes three parts. First, an involution operator slides over the input HSI's spectral channels, which can independently measure the contribution rate of the spectral channel of each pixel to the spectral feature tensor construction. Furthermore, the spatial information of HSI and LiDAR data is integrated and excavated in an adaptively fused, modality-oriented manner. Second, a spectral-spatial mutual-guided module is designed for the feature collaborative transmission among spectral features and spatial information, which can increase the semantic relatedness connection through adaptive, multiscale, and mutual-learning transmission. Finally, the fused spatial-spectral features are embedded into a classification module to obtain the final results, which determines whether to continue updating the network weights. Experimental evaluations on HSI-LiDAR datasets indicate that AM 3 Net possesses a better feature representation ability than the state-of-the-art methods. Additionally, AM 3 Net still maintains considerable performance when its input is replaced with multispectral and synthetic aperture radar data. The result indicates that the proposed data fusion framework is compatible with diversified data types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Cloud采纳,获得30
1秒前
李健的小迷弟应助大胖采纳,获得80
1秒前
Owen应助疯狂的平彤采纳,获得10
1秒前
高贵的冰旋完成签到 ,获得积分10
2秒前
爆米花应助winew采纳,获得10
5秒前
脑洞疼应助怕黑乌冬面采纳,获得10
5秒前
小张完成签到 ,获得积分10
7秒前
绵绵冰完成签到 ,获得积分10
7秒前
Ethan完成签到 ,获得积分10
7秒前
不配.应助HNDuan采纳,获得60
11秒前
lovekobe发布了新的文献求助10
13秒前
14秒前
听说现在你成了大锦鲤完成签到,获得积分10
16秒前
17秒前
浮游应助科研通管家采纳,获得30
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得20
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
19秒前
Cloud完成签到,获得积分10
19秒前
21秒前
21秒前
Cloud发布了新的文献求助30
23秒前
24秒前
song完成签到,获得积分10
24秒前
26秒前
wxyshare应助lovekobe采纳,获得10
27秒前
SUN应助lovekobe采纳,获得10
27秒前
whoknowsname完成签到,获得积分10
28秒前
隐形大米完成签到 ,获得积分10
28秒前
toda完成签到,获得积分10
29秒前
我_我完成签到 ,获得积分10
33秒前
35秒前
温婉的翎发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5041846
求助须知:如何正确求助?哪些是违规求助? 4272541
关于积分的说明 13321139
捐赠科研通 4085186
什么是DOI,文献DOI怎么找? 2235017
邀请新用户注册赠送积分活动 1242602
关于科研通互助平台的介绍 1169370