Friends with benefits: How income and peer diffusion combine to create an inequality “trap” in the uptake of low-carbon technologies

补贴 不平等 经济不平等 公共经济学 经济 社会不平等 政府(语言学) 环境经济学 业务 数学 市场经济 数学分析 语言学 哲学
作者
Fraser Stewart
出处
期刊:Energy Policy [Elsevier]
卷期号:163: 112832-112832 被引量:11
标识
DOI:10.1016/j.enpol.2022.112832
摘要

What drives inequalities in the uptake of low-carbon energy technologies? Research has shown that people on higher incomes are significantly more likely to access and benefit from policies designed to boost uptake of clean energy technologies than those with lower incomes, revealing a pervasive inequality issue. Yet little is known about how these inequalities evolve or interact with factors beyond income alone, understanding of which is crucial to designing policies which do not simply replicate or exacerbate existing inequalities going forward. This paper thus advances the novel "feed-in-tariff trap" theory, which posits that, rather than income alone, peer diffusion and socioeconomic factors compound to widen inequalities in the uptake of low-carbon technologies over time. Using a combination of mixed effects and piecewise structural equation modelling, this theory is tested on the adoption of 21,206 household-level wind and solar PV installations across 6976 micro-level data-zones in Scotland between 2009 and 2020 under the UK government feed-in-tariff. It finds crucially that: (1) household solar PV and wind are adopted consistently in higher-income areas, (2) peer diffusion is strongest in higher income areas with high early adoption rates, and (3) socioeconomic conditions are extremely temporally stubborn. Combined, this trifecta creates an inequality "trap", locking the benefits of low-carbon technology subsidies into the same higher income areas and widening the gap in uptake between more affluent and deprived communities as a result. Recommendations are given on how best to address this, with implications for anyone concerned with a "just" transition going forward.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YuZhang发布了新的文献求助10
1秒前
sssaasa发布了新的文献求助10
1秒前
wxy完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助淡淡夕阳采纳,获得10
2秒前
鲸鱼发布了新的文献求助10
3秒前
从容小鸽子完成签到,获得积分10
4秒前
5秒前
笑一笑发布了新的文献求助10
5秒前
Coldpal完成签到,获得积分10
5秒前
李梦茹发布了新的文献求助10
5秒前
6秒前
哇哇哇哇发布了新的文献求助10
6秒前
7秒前
充电宝应助李铮采纳,获得10
7秒前
打打应助JasVe采纳,获得50
8秒前
sssaasa完成签到,获得积分20
9秒前
刘荣鑫完成签到,获得积分10
9秒前
饱满香彤完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
顾矜应助李梦茹采纳,获得10
9秒前
wanci应助Ryuichi采纳,获得10
9秒前
violet完成签到,获得积分10
10秒前
MeM发布了新的文献求助10
10秒前
传奇3应助苹果宝宝采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
嘻嘻关注了科研通微信公众号
12秒前
12秒前
12秒前
在水一方应助淡淡夕阳采纳,获得10
13秒前
小二郎应助kk采纳,获得10
13秒前
万能图书馆应助小只采纳,获得10
14秒前
科研通AI2S应助xiao采纳,获得10
14秒前
15秒前
15秒前
科目三应助wcz采纳,获得10
16秒前
17秒前
hbpu230701发布了新的文献求助10
18秒前
x跳发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165