光催化
余辉
降级(电信)
发光
化学
催化作用
制氢
材料科学
氢
光化学
光电子学
物理
计算机科学
有机化学
电信
天文
伽马射线暴
作者
Jianhe Tang,Xueke Liu,Yu Liu,Xing Zhang,Yitong Lin,Liang Chen,Dawei Fang,Jun Wang
标识
DOI:10.1016/j.cej.2022.134773
摘要
The photocatalytic reaction can carry out only under light irradiation, which limits the application of photocatalytic technology in the wastewater treatment and hydrogen production under no-light condition. In this study, Sr2MgSi2O7:Eu2+,Dy3+ with unique luminescence property was combined with Ag3PO4 to construct a novel Z-scheme Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 photocatalyst. The morphology, structure, luminescence and photoelectric properties of the prepared samples were investigated by various characterization techniques. Some important influencing factors such as the mass ratios of Sr2MgSi2O7:Eu2+,Dy3+ and Ag3PO4, illumination times and cycling times were investigated. The results indicate that the Z-scheme Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 photocatalyst with the best mass ratio (15:1) possesses superior photocatalytic activity. The LEV degradation rate is 81.94 % and the hydrogen production reaches 491 μmol/g under simulated sunlight irradiation for 1.0 h. The long-afterglow Sr2MgSi2O7:Eu2+,Dy3+ material can continue to support the photocatalytic reaction even after the light is turned off. The final LEV degradation is 86.84 % and the final hydrogen production amount reaches 591 μmol/g after the light is turned off for 3.0 h. Meanwhile, the process and possible mechanism of the round-the-clock photocatalytic LEV degradation with simultaneous hydrogen production were reported for the first time. This work cleverly uses the long-afterglow Sr2MgSi2O7:Eu2+,Dy3+ material combined with Ag3PO4 to form a novel Z-scheme photocatalyst, which realizes the organic pollutant degradation with simultaneous hydrogen production under the light on/off conditions, providing a new strategy for the round-the-clock efficient utilization of the photocatalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI