Bi-Directional Progressive Guidance Network for RGB-D Salient Object Detection

RGB颜色模型 人工智能 计算机科学 判别式 特征提取 计算机视觉 特征(语言学) 突出 模态(人机交互) 背景(考古学) 模式识别(心理学) 目标检测 古生物学 哲学 语言学 生物
作者
Yang Yang,Qi Qin,Yongjiang Luo,Yi Liu,Qiang Zhang,Jungong Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5346-5360 被引量:46
标识
DOI:10.1109/tcsvt.2022.3144852
摘要

Most existing RGB-D salient detection models pay more attention to the quality of the depth images, while in some special cases, the quality of RGB images may even have greater impacts on saliency detection, which has long been ignored and underestimated. To address this problem, in this paper, we present a Bi-directional Progressive Guidance Network (BPGNet) for RGB-D salient object detection, where the qualities of both RGB and depth images are involved. Since it is usually difficult to determine which modality data have low quality in advance, a bi-directional framework based on progressive guidance (PG) strategy is employed to extract and enhance the unimodal features with the aid of another modality data via the alternative interactions between the saliency prediction results and the extracted features from the multi-modality input data. Specifically, the proposed PG strategy is achieved by using the proposed Global Context Awareness (GCA), Auxiliary Feature Extraction (AFE) and Cross-modality Feature Enhancement (CFE) modules. Benefiting from the proposed PG strategy, the disturbing information within the input RGB and depth images can be well suppressed, while the discriminative information within the input images gets enhanced. On top of that, a Fusion Prediction Module (FPM) is further designed to adaptively select those features with higher discriminability as well as enhancing the common information for the final saliency prediction. Experimental results demonstrate that our proposed model is comparable to those of state-of-the-art RGB-D SOD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
orixero应助投必快业必毕采纳,获得10
4秒前
衣谷完成签到 ,获得积分10
4秒前
健壮问兰完成签到 ,获得积分10
7秒前
肥肉叉烧发布了新的文献求助10
9秒前
搬运工完成签到,获得积分10
9秒前
科目三应助狂野绿竹采纳,获得10
11秒前
11秒前
12秒前
ET发布了新的文献求助10
15秒前
热心雪一完成签到 ,获得积分10
17秒前
林林完成签到,获得积分10
18秒前
18秒前
CipherSage应助肥肉叉烧采纳,获得10
19秒前
yeyeyeyeyeyeyeye完成签到,获得积分10
25秒前
Moonboss完成签到 ,获得积分10
26秒前
跟屁虫完成签到,获得积分10
28秒前
29秒前
31秒前
31秒前
景景好完成签到,获得积分10
31秒前
Euphoria完成签到 ,获得积分10
33秒前
34秒前
小熊座a完成签到 ,获得积分10
36秒前
AiX-zzzzz发布了新的文献求助10
37秒前
38秒前
tfr06完成签到,获得积分10
41秒前
43秒前
44秒前
踏实滑板完成签到 ,获得积分20
45秒前
Rio完成签到,获得积分10
47秒前
50秒前
ii完成签到 ,获得积分10
50秒前
51秒前
Ricardo完成签到 ,获得积分10
52秒前
ie发布了新的文献求助10
55秒前
1分钟前
陈曦完成签到,获得积分10
1分钟前
顾矜应助叩白采纳,获得10
1分钟前
共享精神应助nanomolar采纳,获得10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165538
求助须知:如何正确求助?哪些是违规求助? 2816691
关于积分的说明 7913299
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388