Bi-Directional Progressive Guidance Network for RGB-D Salient Object Detection

RGB颜色模型 人工智能 计算机科学 判别式 特征提取 计算机视觉 特征(语言学) 突出 模态(人机交互) 背景(考古学) 模式识别(心理学) 目标检测 古生物学 哲学 语言学 生物
作者
Yang Yang,Qi Qin,Yongjiang Luo,Yi Liu,Qiang Zhang,Jungong Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5346-5360 被引量:46
标识
DOI:10.1109/tcsvt.2022.3144852
摘要

Most existing RGB-D salient detection models pay more attention to the quality of the depth images, while in some special cases, the quality of RGB images may even have greater impacts on saliency detection, which has long been ignored and underestimated. To address this problem, in this paper, we present a Bi-directional Progressive Guidance Network (BPGNet) for RGB-D salient object detection, where the qualities of both RGB and depth images are involved. Since it is usually difficult to determine which modality data have low quality in advance, a bi-directional framework based on progressive guidance (PG) strategy is employed to extract and enhance the unimodal features with the aid of another modality data via the alternative interactions between the saliency prediction results and the extracted features from the multi-modality input data. Specifically, the proposed PG strategy is achieved by using the proposed Global Context Awareness (GCA), Auxiliary Feature Extraction (AFE) and Cross-modality Feature Enhancement (CFE) modules. Benefiting from the proposed PG strategy, the disturbing information within the input RGB and depth images can be well suppressed, while the discriminative information within the input images gets enhanced. On top of that, a Fusion Prediction Module (FPM) is further designed to adaptively select those features with higher discriminability as well as enhancing the common information for the final saliency prediction. Experimental results demonstrate that our proposed model is comparable to those of state-of-the-art RGB-D SOD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助zhaomr采纳,获得10
刚刚
调研昵称发布了新的文献求助10
刚刚
刚刚
雨中的诗柳完成签到,获得积分10
刚刚
酷波er应助小鼠拯救者采纳,获得10
刚刚
丘比特应助动听导师采纳,获得10
刚刚
1秒前
1秒前
Krystal完成签到,获得积分10
1秒前
逝水无痕完成签到,获得积分10
1秒前
lkc发布了新的文献求助10
3秒前
3秒前
又村完成签到 ,获得积分10
3秒前
jiojio完成签到,获得积分10
4秒前
蔡小葵发布了新的文献求助10
4秒前
Acc完成签到,获得积分10
4秒前
4秒前
yasan发布了新的文献求助10
4秒前
小怀完成签到 ,获得积分10
5秒前
5秒前
Mia完成签到 ,获得积分20
5秒前
友好灵萱完成签到,获得积分10
5秒前
5秒前
ah完成签到,获得积分10
6秒前
科研CY发布了新的文献求助10
6秒前
假行僧完成签到,获得积分10
6秒前
刘芸芸发布了新的文献求助10
6秒前
赖建琛完成签到 ,获得积分10
7秒前
7秒前
7秒前
哆啦顺利毕业完成签到,获得积分10
8秒前
8秒前
32完成签到 ,获得积分10
8秒前
曼尼完成签到,获得积分10
8秒前
安安完成签到 ,获得积分10
8秒前
花生爱发文完成签到,获得积分10
9秒前
搜集达人应助大晨采纳,获得10
9秒前
梦幻完成签到 ,获得积分10
9秒前
9秒前
半糖完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762