INFO: An efficient optimization algorithm based on weighted mean of vectors

趋同(经济学) 计算机科学 重量 算法 职位(财务) 数学优化 数学 财务 李代数 纯数学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Saeed Noshadian,Huiling Chen,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:195: 116516-116516 被引量:446
标识
DOI:10.1016/j.eswa.2022.116516
摘要

This study presents the analysis and principle of an innovative optimizer named weIghted meaN oF vectOrs (INFO) to optimize different problems. INFO is a modified weight mean method, whereby the weighted mean idea is employed for a solid structure and updating the vectors’ position using three core procedures: updating rule, vector combining, and a local search. The updating rule stage is based on a mean-based law and convergence acceleration to generate new vectors. The vector combining stage creates a combination of obtained vectors with the updating rule to achieve a promising solution. The updating rule and vector combining steps were improved in INFO to increase the exploration and exploitation capacities. Moreover, the local search stage helps this algorithm escape low-accuracy solutions and improve exploitation and convergence. The performance of INFO was evaluated in 48 mathematical test functions, and five constrained engineering test cases including optimal design of 10-reservoir system and 4-reservoir system. According to the literature, the results demonstrate that INFO outperforms other basic and advanced methods in terms of exploration and exploitation. In the case of engineering problems, the results indicate that the INFO can converge to 0.99% of the global optimum solution. Hence, the INFO algorithm is a promising tool for optimal designs in optimization problems, which stems from the considerable efficiency of this algorithm for optimizing constrained cases. The source codes of INFO algorithm are publicly available at https://imanahmadianfar.com. and https://aliasgharheidari.com/INFO.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到 ,获得积分10
1秒前
1秒前
聪慧小霜发布了新的文献求助10
1秒前
聪慧小霜发布了新的文献求助10
1秒前
聪慧小霜发布了新的文献求助10
1秒前
聪慧小霜发布了新的文献求助10
1秒前
yy123发布了新的文献求助10
2秒前
Tayzon完成签到 ,获得积分10
2秒前
2秒前
Albertxkcj发布了新的文献求助10
2秒前
orixero应助眯眯眼的老鼠采纳,获得10
3秒前
思源应助眯眯眼的老鼠采纳,获得10
3秒前
huayi发布了新的文献求助10
3秒前
超帅的寒梅完成签到,获得积分10
4秒前
feike完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
NJP完成签到,获得积分10
5秒前
5秒前
zhaogz发布了新的文献求助10
6秒前
白茶清欢完成签到 ,获得积分10
7秒前
南丘完成签到,获得积分10
7秒前
小垃圾一枚完成签到,获得积分10
7秒前
九月鹰飞发布了新的文献求助10
7秒前
小雒雒发布了新的文献求助10
7秒前
8秒前
完美夜白完成签到,获得积分10
8秒前
宾果消消气完成签到,获得积分10
8秒前
9秒前
seal发布了新的文献求助10
9秒前
dreamer发布了新的文献求助10
9秒前
Lu发布了新的文献求助10
10秒前
啦啦啦发布了新的文献求助10
11秒前
Hello应助sunyuhao采纳,获得10
11秒前
12秒前
13秒前
111发布了新的文献求助10
13秒前
咸鱼完成签到,获得积分10
13秒前
元寄灵发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836