INFO: An efficient optimization algorithm based on weighted mean of vectors

趋同(经济学) 计算机科学 重量 算法 职位(财务) 数学优化 数学 财务 李代数 纯数学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Saeed Noshadian,Huiling Chen,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:195: 116516-116516 被引量:446
标识
DOI:10.1016/j.eswa.2022.116516
摘要

This study presents the analysis and principle of an innovative optimizer named weIghted meaN oF vectOrs (INFO) to optimize different problems. INFO is a modified weight mean method, whereby the weighted mean idea is employed for a solid structure and updating the vectors’ position using three core procedures: updating rule, vector combining, and a local search. The updating rule stage is based on a mean-based law and convergence acceleration to generate new vectors. The vector combining stage creates a combination of obtained vectors with the updating rule to achieve a promising solution. The updating rule and vector combining steps were improved in INFO to increase the exploration and exploitation capacities. Moreover, the local search stage helps this algorithm escape low-accuracy solutions and improve exploitation and convergence. The performance of INFO was evaluated in 48 mathematical test functions, and five constrained engineering test cases including optimal design of 10-reservoir system and 4-reservoir system. According to the literature, the results demonstrate that INFO outperforms other basic and advanced methods in terms of exploration and exploitation. In the case of engineering problems, the results indicate that the INFO can converge to 0.99% of the global optimum solution. Hence, the INFO algorithm is a promising tool for optimal designs in optimization problems, which stems from the considerable efficiency of this algorithm for optimizing constrained cases. The source codes of INFO algorithm are publicly available at https://imanahmadianfar.com. and https://aliasgharheidari.com/INFO.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
toxikon发布了新的文献求助10
刚刚
1秒前
3秒前
大模型应助剁辣椒蒸鱼头采纳,获得20
3秒前
小北完成签到 ,获得积分10
3秒前
4秒前
高挑的冰露完成签到 ,获得积分10
7秒前
ruochenzu发布了新的文献求助10
7秒前
老李完成签到,获得积分10
7秒前
8秒前
9秒前
tough_cookie完成签到 ,获得积分10
10秒前
彩钢房完成签到,获得积分10
11秒前
MeSs完成签到 ,获得积分10
12秒前
toxikon完成签到,获得积分10
13秒前
一点通完成签到,获得积分10
13秒前
Lei完成签到,获得积分10
14秒前
14秒前
14秒前
常若冰完成签到,获得积分10
14秒前
纯真的元风完成签到,获得积分10
15秒前
哇哈哈哈完成签到,获得积分10
15秒前
清秋1001完成签到 ,获得积分10
16秒前
qq完成签到,获得积分10
17秒前
荒野风发布了新的文献求助10
18秒前
Zxx发布了新的文献求助10
19秒前
20秒前
20秒前
确幸完成签到 ,获得积分10
20秒前
苒苒完成签到,获得积分10
20秒前
21秒前
酷波er应助c123采纳,获得10
21秒前
TIAOTIAO完成签到,获得积分10
23秒前
未晚完成签到 ,获得积分10
23秒前
24秒前
24秒前
天天快乐应助qinglinglie采纳,获得10
24秒前
自由老头应助荒野风采纳,获得10
24秒前
本末倒纸发布了新的文献求助10
25秒前
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066