INFO: An efficient optimization algorithm based on weighted mean of vectors

趋同(经济学) 计算机科学 重量 算法 职位(财务) 数学优化 数学 财务 李代数 纯数学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Saeed Noshadian,Huiling Chen,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116516-116516 被引量:446
标识
DOI:10.1016/j.eswa.2022.116516
摘要

This study presents the analysis and principle of an innovative optimizer named weIghted meaN oF vectOrs (INFO) to optimize different problems. INFO is a modified weight mean method, whereby the weighted mean idea is employed for a solid structure and updating the vectors’ position using three core procedures: updating rule, vector combining, and a local search. The updating rule stage is based on a mean-based law and convergence acceleration to generate new vectors. The vector combining stage creates a combination of obtained vectors with the updating rule to achieve a promising solution. The updating rule and vector combining steps were improved in INFO to increase the exploration and exploitation capacities. Moreover, the local search stage helps this algorithm escape low-accuracy solutions and improve exploitation and convergence. The performance of INFO was evaluated in 48 mathematical test functions, and five constrained engineering test cases including optimal design of 10-reservoir system and 4-reservoir system. According to the literature, the results demonstrate that INFO outperforms other basic and advanced methods in terms of exploration and exploitation. In the case of engineering problems, the results indicate that the INFO can converge to 0.99% of the global optimum solution. Hence, the INFO algorithm is a promising tool for optimal designs in optimization problems, which stems from the considerable efficiency of this algorithm for optimizing constrained cases. The source codes of INFO algorithm are publicly available at https://imanahmadianfar.com. and https://aliasgharheidari.com/INFO.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu发布了新的文献求助10
刚刚
orixero应助zx采纳,获得10
1秒前
元元完成签到,获得积分10
3秒前
3秒前
biocreater完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
葳蕤完成签到 ,获得积分10
4秒前
4秒前
FashionBoy应助徐徐俊采纳,获得10
6秒前
xw完成签到,获得积分20
8秒前
9秒前
car完成签到 ,获得积分10
9秒前
123完成签到,获得积分20
9秒前
11秒前
11秒前
哈哈2022完成签到,获得积分10
11秒前
amanda发布了新的文献求助10
14秒前
浅浅依云完成签到,获得积分10
14秒前
领导范儿应助LZR采纳,获得10
15秒前
李健应助凡凡采纳,获得10
15秒前
15秒前
123发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
龙成阳完成签到 ,获得积分10
18秒前
笑点低豆芽完成签到,获得积分10
18秒前
18秒前
xw发布了新的文献求助10
19秒前
20秒前
简单刺猬完成签到,获得积分10
20秒前
20秒前
20秒前
Sweet完成签到,获得积分10
22秒前
23秒前
Ffan完成签到 ,获得积分10
24秒前
李珅玥完成签到,获得积分10
24秒前
pluto应助fafafa采纳,获得10
25秒前
25秒前
Sweet发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838