INFO: An efficient optimization algorithm based on weighted mean of vectors

趋同(经济学) 计算机科学 重量 算法 职位(财务) 数学优化 数学 财务 李代数 纯数学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Saeed Noshadian,Huiling Chen,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116516-116516 被引量:446
标识
DOI:10.1016/j.eswa.2022.116516
摘要

This study presents the analysis and principle of an innovative optimizer named weIghted meaN oF vectOrs (INFO) to optimize different problems. INFO is a modified weight mean method, whereby the weighted mean idea is employed for a solid structure and updating the vectors’ position using three core procedures: updating rule, vector combining, and a local search. The updating rule stage is based on a mean-based law and convergence acceleration to generate new vectors. The vector combining stage creates a combination of obtained vectors with the updating rule to achieve a promising solution. The updating rule and vector combining steps were improved in INFO to increase the exploration and exploitation capacities. Moreover, the local search stage helps this algorithm escape low-accuracy solutions and improve exploitation and convergence. The performance of INFO was evaluated in 48 mathematical test functions, and five constrained engineering test cases including optimal design of 10-reservoir system and 4-reservoir system. According to the literature, the results demonstrate that INFO outperforms other basic and advanced methods in terms of exploration and exploitation. In the case of engineering problems, the results indicate that the INFO can converge to 0.99% of the global optimum solution. Hence, the INFO algorithm is a promising tool for optimal designs in optimization problems, which stems from the considerable efficiency of this algorithm for optimizing constrained cases. The source codes of INFO algorithm are publicly available at https://imanahmadianfar.com. and https://aliasgharheidari.com/INFO.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
demoestar完成签到 ,获得积分10
1秒前
1秒前
zwy发布了新的文献求助10
2秒前
3秒前
4秒前
shine完成签到,获得积分10
5秒前
耶zyf发布了新的文献求助10
7秒前
8R60d8应助852采纳,获得10
7秒前
Spine Lin发布了新的文献求助10
7秒前
黑大侠发布了新的文献求助30
8秒前
8秒前
香蕉觅云应助拓跋雨梅采纳,获得10
10秒前
10秒前
赵焱峥完成签到,获得积分10
13秒前
13秒前
传奇3应助发生了什么树采纳,获得10
13秒前
xun发布了新的文献求助10
14秒前
小草完成签到 ,获得积分10
14秒前
14秒前
16秒前
17秒前
平淡思雁完成签到,获得积分10
18秒前
圆圆完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
21秒前
bkagyin应助xun采纳,获得10
22秒前
24秒前
Jalynn2044发布了新的文献求助10
24秒前
25秒前
27秒前
SciGPT应助天天采纳,获得10
27秒前
arc完成签到,获得积分10
27秒前
ljm发布了新的文献求助100
29秒前
泛光灯完成签到,获得积分10
30秒前
fy完成签到,获得积分10
31秒前
32秒前
弹棉花完成签到,获得积分10
33秒前
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240