A novel genetic algorithm based system for the scheduling of medical treatments

计算机科学 遗传算法 调度(生产过程) 算法 人工智能 数学优化 机器学习 数学
作者
Matthew Squires,Xiaohui Tao,Soman Elangovan,Raj Gururajan,Xujuan Zhou,U. Rajendra Acharya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116464-116464 被引量:44
标识
DOI:10.1016/j.eswa.2021.116464
摘要

The manual scheduling of medical treatment in a health centre is a complex, time consuming, and error prone task. Furthermore, there is no guarantee a manually generated schedule maximises the operational efficiency of the centre. Scheduling problems have seen extensive research across several domains. The current work presents a novel genetic algorithm for the scheduling of repetitive Transcranial Magnetic Stimulation (rTMS) appointments. The proposed List Scheduling Wildcard Tournament Genetic Algorithm (LSWT-GA) combines an innovative survivor selection policy with heuristic population initialisation. The algorithm aims to optimise the operational efficiency of a medical centre through efficient rTMS appointment scheduling. Additionally, the algorithm has the capacity to consider patient priority. Empirical experiments were conducted to evaluate the performance of the proposed algorithm, using a synthetic data set specifically developed to simulate the medical treatment scheduling problem. The experimental results showed the LSWT-GA algorithm outperforms other algorithms, obtaining the optimal makespan more frequently than a List Scheduling Genetic Algorithm (LS-GA) using traditional survivor selection policies and a standard genetic algorithm using random population initialisation (Random-GA). In addition to the novel genetic algorithm, LSWT-GA, the paper also makes a theoretical contribution by evaluating the run time of the LSWT-GA for makespan minimisation. The proposed algorithm and related findings can be applied directly to the administration systems in medical and healthcare centres and helps improve the deployment of medical resources for better treatment effect. • A novel genetic algorithm, LSWT-GA, is presented for medical treatment scheduling. • LSWT-GA adopts survivor selection policy with heuristic population initialisation. • The evaluation of the LSWT-GA run time for makespan minimisation is promising. • An original synthetic data set is developed for medical scheduling optimisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卡尔加里发布了新的文献求助10
刚刚
张志超完成签到,获得积分20
1秒前
xiao牛完成签到,获得积分10
1秒前
www完成签到,获得积分10
1秒前
1秒前
2秒前
小波完成签到,获得积分10
2秒前
打打应助ranqi采纳,获得10
3秒前
张志超发布了新的文献求助10
3秒前
3秒前
Chris完成签到,获得积分10
3秒前
3秒前
WU完成签到,获得积分10
4秒前
4秒前
4秒前
tzy发布了新的文献求助10
4秒前
5秒前
你好啊发布了新的文献求助10
5秒前
5秒前
面壁者完成签到,获得积分10
5秒前
方圆学术完成签到,获得积分10
5秒前
Anxinxin发布了新的文献求助20
5秒前
5秒前
木子完成签到,获得积分10
6秒前
wangfeng007发布了新的文献求助10
6秒前
iNk应助申申来啦采纳,获得10
6秒前
乐观鑫发布了新的文献求助10
6秒前
jevon应助ShengQ采纳,获得20
6秒前
嘉嘉Joey完成签到,获得积分10
6秒前
monere应助Hana采纳,获得10
6秒前
6秒前
852应助研友_8y2G0L采纳,获得10
7秒前
9秒前
852应助Suzanne采纳,获得10
9秒前
9秒前
loeyyu完成签到,获得积分10
9秒前
11完成签到,获得积分10
10秒前
Akasazi发布了新的文献求助10
10秒前
张小小完成签到,获得积分10
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245223
求助须知:如何正确求助?哪些是违规求助? 2888917
关于积分的说明 8256094
捐赠科研通 2557285
什么是DOI,文献DOI怎么找? 1385910
科研通“疑难数据库(出版商)”最低求助积分说明 650265
邀请新用户注册赠送积分活动 626494