Diagnosis of Middle Cerebral Artery Stenosis Using Transcranial Doppler Images Based on Convolutional Neural Network

医学 狭窄 经颅多普勒 大脑中动脉 放射科 卷积神经网络 血管造影 心脏病学 人工智能 计算机科学 缺血
作者
Yujia Mei,Ruiting Hu,Lin Jia,Jin Xu,Liya Wu,He-peng Li,Zi‐Ming Ye,Chao Qin
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:161: e118-e125 被引量:6
标识
DOI:10.1016/j.wneu.2022.01.068
摘要

The purpose of this study was to explore the diagnostic value of convolutional neural networks (CNNs) in middle cerebral artery (MCA) stenosis by analyzing transcranial Doppler (TCD) images. Overall, 278 patients who underwent cerebral vascular TCD and cerebral angiography were enrolled and classified into stenosis and non-stenosis groups based on cerebral angiography findings. Manual measurements were performed on TCD images. The patients were divided into a training set and a test set, and the CNN architecture was used to classify TCD images. The diagnostic accuracies of manual measurements, CNNs, and TCD parameters for MCA stenosis were calculated and compared. Overall, 203 patients without stenosis and 75 patients with stenosis were evaluated. The sensitivity, specificity, and area under the curve (AUC) for manual measurements of MCA stenosis were 0.80, 0.83, and 0.81, respectively. After 24 iterations of the running model in the training set, the sensitivity, specificity, and AUC of the CNNs in the test set were 0.84, 0.86, and 0.80, respectively. The diagnostic value of CNNs differed minimally from that of manual measurements. Two parameters of TCD, peak systolic velocity and mean flow velocity, were higher in patients with stenosis than in those without stenosis; however, their diagnostic values were significantly lower than those of CNNs (P < 0.05). The diagnostic value of CNNs for MCA stenosis based on TCD images paralleled that of manual measurements. CNNs could be used as an auxiliary diagnostic tool to improve the diagnosis of MCA stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
古月发布了新的文献求助10
刚刚
qq完成签到 ,获得积分10
刚刚
热心市民小红花应助嗄巧采纳,获得10
刚刚
labxgr发布了新的文献求助10
刚刚
瘦瘦的草丛完成签到,获得积分10
刚刚
laber应助liaofr采纳,获得30
1秒前
Cleo发布了新的文献求助10
1秒前
SYLH应助王桂元采纳,获得30
1秒前
熊猫完成签到,获得积分10
1秒前
LSY完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
科目三应助胡梅13采纳,获得10
3秒前
3秒前
thy完成签到,获得积分10
3秒前
烟花应助可乐清欢采纳,获得10
4秒前
mmb完成签到,获得积分10
4秒前
Research完成签到 ,获得积分10
4秒前
5秒前
6秒前
苏雅霏发布了新的文献求助10
6秒前
思源应助古月采纳,获得10
6秒前
李云发布了新的文献求助10
6秒前
7秒前
思敏完成签到,获得积分10
8秒前
young发布了新的文献求助10
8秒前
sunnnn发布了新的文献求助30
8秒前
8秒前
dali完成签到 ,获得积分10
9秒前
9秒前
wanci应助ZZ采纳,获得10
9秒前
科研扫地僧完成签到,获得积分10
9秒前
大力的鱼完成签到,获得积分10
9秒前
小仙完成签到,获得积分10
10秒前
10秒前
无聊的听寒完成签到,获得积分10
10秒前
贰鸟应助忧郁衬衫采纳,获得10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609