Diagnosis of Middle Cerebral Artery Stenosis Using Transcranial Doppler Images Based on Convolutional Neural Network

医学 狭窄 经颅多普勒 大脑中动脉 放射科 卷积神经网络 血管造影 心脏病学 人工智能 计算机科学 缺血
作者
Yujia Mei,Ruiting Hu,Lin Jia,Jin Xu,Liya Wu,He-peng Li,Zi‐Ming Ye,Chao Qin
出处
期刊:World Neurosurgery [Elsevier]
卷期号:161: e118-e125 被引量:6
标识
DOI:10.1016/j.wneu.2022.01.068
摘要

The purpose of this study was to explore the diagnostic value of convolutional neural networks (CNNs) in middle cerebral artery (MCA) stenosis by analyzing transcranial Doppler (TCD) images. Overall, 278 patients who underwent cerebral vascular TCD and cerebral angiography were enrolled and classified into stenosis and non-stenosis groups based on cerebral angiography findings. Manual measurements were performed on TCD images. The patients were divided into a training set and a test set, and the CNN architecture was used to classify TCD images. The diagnostic accuracies of manual measurements, CNNs, and TCD parameters for MCA stenosis were calculated and compared. Overall, 203 patients without stenosis and 75 patients with stenosis were evaluated. The sensitivity, specificity, and area under the curve (AUC) for manual measurements of MCA stenosis were 0.80, 0.83, and 0.81, respectively. After 24 iterations of the running model in the training set, the sensitivity, specificity, and AUC of the CNNs in the test set were 0.84, 0.86, and 0.80, respectively. The diagnostic value of CNNs differed minimally from that of manual measurements. Two parameters of TCD, peak systolic velocity and mean flow velocity, were higher in patients with stenosis than in those without stenosis; however, their diagnostic values were significantly lower than those of CNNs (P < 0.05). The diagnostic value of CNNs for MCA stenosis based on TCD images paralleled that of manual measurements. CNNs could be used as an auxiliary diagnostic tool to improve the diagnosis of MCA stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysssbq完成签到,获得积分10
2秒前
自然千山完成签到,获得积分10
2秒前
Jasper应助一个稚气的小孩采纳,获得10
3秒前
狗儿吖完成签到 ,获得积分10
4秒前
琦琦777完成签到,获得积分10
5秒前
6秒前
清爽的诗槐完成签到,获得积分10
7秒前
1111发布了新的文献求助10
9秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
9秒前
小赞完成签到,获得积分10
9秒前
Dlan完成签到,获得积分10
10秒前
静心完成签到,获得积分10
10秒前
今天也要好好学习完成签到,获得积分10
10秒前
DONNYTIO完成签到,获得积分10
10秒前
Owen应助彩色的芷容采纳,获得10
11秒前
xt发布了新的文献求助10
12秒前
快乐的鱼完成签到,获得积分10
13秒前
重要的惜萍完成签到,获得积分10
14秒前
阿托伐他汀完成签到 ,获得积分10
16秒前
仁爱钢笔完成签到 ,获得积分10
16秒前
18秒前
Benjamin完成签到 ,获得积分10
18秒前
18秒前
庚朝年完成签到 ,获得积分10
20秒前
道道sy完成签到,获得积分10
21秒前
meng完成签到,获得积分10
21秒前
占博涛发布了新的文献求助10
21秒前
24秒前
nano完成签到 ,获得积分10
24秒前
852应助空白采纳,获得10
25秒前
tiger完成签到,获得积分10
26秒前
27秒前
闾丘博完成签到,获得积分10
28秒前
花阳年华完成签到 ,获得积分10
29秒前
ruann完成签到 ,获得积分10
30秒前
张斯瑞完成签到,获得积分10
31秒前
橄榄囚徒完成签到 ,获得积分10
32秒前
缓慢冰菱完成签到,获得积分10
34秒前
34秒前
lixiang完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150630
求助须知:如何正确求助?哪些是违规求助? 2802187
关于积分的说明 7846295
捐赠科研通 2459463
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628803
版权声明 601757