Cross-trial prediction of treatment outcome in depression: a machine learning approach

依西酞普兰 西酞普兰 米氮平 文拉法辛 抗抑郁药 医学 内科学 萧条(经济学) 临床试验 倾向得分匹配 机器学习 计算机科学 重性抑郁障碍 心理学 经济 扁桃形结构 宏观经济学 海马体
作者
Adam M. Chekroud,Ryan Zotti,Zarrar Shehzad,Ralitza Gueorguieva,Marcia K. Johnson,Madhukar H. Trivedi,Tyrone D. Cannon,John H. Krystal,Philip R. Corlett
出处
期刊:The Lancet Psychiatry [Elsevier]
卷期号:3 (3): 243-250 被引量:570
标识
DOI:10.1016/s2215-0366(15)00471-x
摘要

Background Antidepressant treatment efficacy is low, but might be improved by matching patients to interventions. At present, clinicians have no empirically validated mechanisms to assess whether a patient with depression will respond to a specific antidepressant. We aimed to develop an algorithm to assess whether patients will achieve symptomatic remission from a 12-week course of citalopram. Methods We used patient-reported data from patients with depression (n=4041, with 1949 completers) from level 1 of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D; ClinicalTrials.gov, number NCT00021528) to identify variables that were most predictive of treatment outcome, and used these variables to train a machine-learning model to predict clinical remission. We externally validated the model in the escitalopram treatment group (n=151) of an independent clinical trial (Combining Medications to Enhance Depression Outcomes [COMED]; ClinicalTrials.gov, number NCT00590863). Findings We identified 25 variables that were most predictive of treatment outcome from 164 patient-reportable variables, and used these to train the model. The model was internally cross-validated, and predicted outcomes in the STAR*D cohort with accuracy significantly above chance (64·6% [SD 3·2]; p<0·0001). The model was externally validated in the escitalopram treatment group (N=151) of COMED (accuracy 59·6%, p=0.043). The model also performed significantly above chance in a combined escitalopram-buproprion treatment group in COMED (n=134; accuracy 59·7%, p=0·023), but not in a combined venlafaxine-mirtazapine group (n=140; accuracy 51·4%, p=0·53), suggesting specificity of the model to underlying mechanisms. Interpretation Building statistical models by mining existing clinical trial data can enable prospective identification of patients who are likely to respond to a specific antidepressant. Funding Yale University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
奋斗的不言完成签到,获得积分10
1秒前
1秒前
謓言发布了新的文献求助10
2秒前
王慧颖完成签到 ,获得积分20
2秒前
Jasper应助hp571采纳,获得10
2秒前
BWZ发布了新的文献求助10
3秒前
3秒前
昏睡的蟠桃应助N_wh采纳,获得80
3秒前
灵巧婷冉发布了新的文献求助10
4秒前
MedChemWL发布了新的文献求助10
4秒前
无语的梦菲完成签到,获得积分10
4秒前
生动初蓝发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
童天真完成签到 ,获得积分10
5秒前
不攻自破发布了新的文献求助10
5秒前
路路发布了新的文献求助10
5秒前
6秒前
旺仔完成签到,获得积分10
6秒前
顾矜应助丑的很别致采纳,获得10
6秒前
Ricky发布了新的文献求助10
6秒前
派出所110完成签到,获得积分10
7秒前
躲避问我发布了新的文献求助10
7秒前
南医医发布了新的文献求助10
8秒前
yanyuqing发布了新的文献求助10
9秒前
9秒前
9秒前
有魅力书雪完成签到,获得积分10
9秒前
wangzhen发布了新的文献求助10
10秒前
泡泡完成签到,获得积分10
10秒前
Theprisoners应助大白采纳,获得20
10秒前
123完成签到,获得积分10
10秒前
hp571完成签到,获得积分10
11秒前
11秒前
一一发布了新的文献求助10
12秒前
统统闪开完成签到,获得积分10
12秒前
亭树完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316