Cross-trial prediction of treatment outcome in depression: a machine learning approach

依西酞普兰 西酞普兰 米氮平 文拉法辛 抗抑郁药 医学 内科学 萧条(经济学) 临床试验 倾向得分匹配 机器学习 计算机科学 重性抑郁障碍 心理学 经济 扁桃形结构 宏观经济学 海马体
作者
Adam M. Chekroud,Ryan Zotti,Zarrar Shehzad,Ralitza Gueorguieva,Marcia K. Johnson,Madhukar H. Trivedi,Tyrone D. Cannon,John H. Krystal,Philip R. Corlett
出处
期刊:The Lancet Psychiatry [Elsevier]
卷期号:3 (3): 243-250 被引量:602
标识
DOI:10.1016/s2215-0366(15)00471-x
摘要

Background Antidepressant treatment efficacy is low, but might be improved by matching patients to interventions. At present, clinicians have no empirically validated mechanisms to assess whether a patient with depression will respond to a specific antidepressant. We aimed to develop an algorithm to assess whether patients will achieve symptomatic remission from a 12-week course of citalopram. Methods We used patient-reported data from patients with depression (n=4041, with 1949 completers) from level 1 of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D; ClinicalTrials.gov, number NCT00021528) to identify variables that were most predictive of treatment outcome, and used these variables to train a machine-learning model to predict clinical remission. We externally validated the model in the escitalopram treatment group (n=151) of an independent clinical trial (Combining Medications to Enhance Depression Outcomes [COMED]; ClinicalTrials.gov, number NCT00590863). Findings We identified 25 variables that were most predictive of treatment outcome from 164 patient-reportable variables, and used these to train the model. The model was internally cross-validated, and predicted outcomes in the STAR*D cohort with accuracy significantly above chance (64·6% [SD 3·2]; p<0·0001). The model was externally validated in the escitalopram treatment group (N=151) of COMED (accuracy 59·6%, p=0.043). The model also performed significantly above chance in a combined escitalopram-buproprion treatment group in COMED (n=134; accuracy 59·7%, p=0·023), but not in a combined venlafaxine-mirtazapine group (n=140; accuracy 51·4%, p=0·53), suggesting specificity of the model to underlying mechanisms. Interpretation Building statistical models by mining existing clinical trial data can enable prospective identification of patients who are likely to respond to a specific antidepressant. Funding Yale University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克泷完成签到 ,获得积分10
2秒前
peng完成签到 ,获得积分10
3秒前
6秒前
包子牛奶完成签到,获得积分10
8秒前
8秒前
ghjghk完成签到,获得积分20
10秒前
李爱国应助lgj采纳,获得10
11秒前
13秒前
xiaofenzi完成签到,获得积分10
14秒前
干净思远完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
拓跋涵易完成签到,获得积分10
19秒前
20秒前
KK完成签到,获得积分10
21秒前
荼白完成签到 ,获得积分10
24秒前
wy0409完成签到,获得积分10
25秒前
27秒前
寒水完成签到 ,获得积分10
27秒前
宝玉完成签到 ,获得积分20
29秒前
陆程文完成签到,获得积分10
30秒前
浮游应助Bella采纳,获得10
31秒前
33秒前
37秒前
CodeCraft应助gro_ele采纳,获得10
38秒前
量子星尘发布了新的文献求助30
39秒前
真实的钢笔完成签到,获得积分10
40秒前
滑腻腻的小鱼完成签到,获得积分20
41秒前
大佬完成签到,获得积分10
42秒前
43秒前
44秒前
45秒前
Arctic完成签到 ,获得积分10
45秒前
46秒前
WittingGU完成签到,获得积分0
47秒前
47秒前
洛歌完成签到 ,获得积分10
48秒前
lgj发布了新的文献求助10
50秒前
皮皮虾完成签到 ,获得积分10
51秒前
gro_ele发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044644
求助须知:如何正确求助?哪些是违规求助? 4274226
关于积分的说明 13323416
捐赠科研通 4087927
什么是DOI,文献DOI怎么找? 2236588
邀请新用户注册赠送积分活动 1244008
关于科研通互助平台的介绍 1172033