Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method

氮氧化物 锅炉(水暖) 工程类 人工神经网络 汽车工程 工艺工程 废物管理 计算机科学 燃烧 人工智能 化学 有机化学
作者
Peng Tan,Xia Ji,Cheng Zhang,Qingyan Fang,Gang Chen
出处
期刊:Energy [Elsevier]
卷期号:94: 672-679 被引量:110
标识
DOI:10.1016/j.energy.2015.11.020
摘要

This paper focuses on modeling and reducing NOX emissions for a coal-fired boilers with advanced machine learning approaches. The novel ELM (extreme learning machine) model was introduced to model the correlation between operational parameters and NOX emissions of the boiler. Approximately ten days of real data from the SIS (supervisory information system) of a 700 MW coal-fired power plant were acquired to train and verify the ELM-based NOX model. Based on the NOX model, HS (harmony search) algorithm was then employed to optimize the operational parameters to finally realize NOX emission reduction. The modeling results indicated that the ELM model was more precise and faster in modeling NOX emissions than the popular artificial neural network and support vector regression. The searching process of HS was convergent and consumed only 0.7 s of CPU (Central Processing Unit) time on a personal computer. 16.5% and 19.3% NOX emission reductions for the two selected cases were achieved according to the simulation result. Additionally, the simulation result was experimentally justified, which demonstrated that the experimental results corresponded well with the computational: the experimental NOX reduction percentages were 14.8% and 15.7%, respectively. The proposed integrated method was capable of providing desired and feasible solutions within 1 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoli_Guo发布了新的文献求助10
1秒前
jk...发布了新的文献求助10
2秒前
村北头小可爱完成签到,获得积分10
2秒前
生物kooqx完成签到,获得积分10
2秒前
3秒前
3秒前
皎皎发布了新的文献求助10
3秒前
香蕉觅云应助qqq采纳,获得10
4秒前
Lu发布了新的文献求助10
4秒前
圆圆完成签到 ,获得积分10
6秒前
CipherSage应助xc采纳,获得10
6秒前
旧是完成签到 ,获得积分10
6秒前
bobecust完成签到,获得积分10
7秒前
昕昕子完成签到 ,获得积分20
7秒前
8秒前
听话的靖柏完成签到 ,获得积分10
8秒前
8秒前
万能图书馆应助禹平露采纳,获得10
8秒前
研友_LXOrO8完成签到,获得积分10
8秒前
11完成签到 ,获得积分10
9秒前
FashionBoy应助kelly采纳,获得10
9秒前
9秒前
9秒前
10秒前
LeiDY完成签到,获得积分20
11秒前
爱吃柚子的柯基完成签到,获得积分10
11秒前
寂寞圣贤完成签到,获得积分10
12秒前
mzj发布了新的文献求助10
13秒前
13秒前
传统的凝天完成签到,获得积分10
14秒前
14秒前
14秒前
香蕉觅云应助迪迪Landy采纳,获得10
14秒前
85搏一博应助Wonder采纳,获得10
14秒前
14秒前
15秒前
情怀应助cx采纳,获得30
15秒前
李爱国应助Lu采纳,获得10
15秒前
16秒前
qqq发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351