Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China

水土评价工具 马尔科夫蒙特卡洛 不确定度分析 胶水 计算机科学 贝叶斯概率 似然函数 不确定度量化 贝叶斯推理 计量经济学 统计 估计理论 数学 算法 流域 机器学习 人工智能 地理 材料科学 地图学 水流 复合材料
作者
Jing Yang,Peter Reichert,Karim C. Abbaspour,Jun Xia,Hong Yang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:358 (1-2): 1-23 被引量:653
标识
DOI:10.1016/j.jhydrol.2008.05.012
摘要

Distributed watershed models are increasingly being used to support decisions about alternative management strategies in the areas of land use change, climate change, water allocation, and pollution control. For this reason it is important that these models pass through a careful calibration and uncertainty analysis. To fulfil this demand, in recent years, scientists have come up with various uncertainty analysis techniques for watershed models. To determine the differences and similarities of these techniques we compared five uncertainty analysis procedures: Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Sequential Uncertainty FItting algorithm (SUFI-2), and a Bayesian framework implemented using Markov chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. As these techniques are different in their philosophies and leave the user some freedom in formulating the generalized likelihood measure, objective function, or likelihood function, a literal comparison between these techniques is not possible. As there is a small spectrum of different applications in hydrology for the first three techniques, we made this choice according to their typical use in hydrology. For Bayesian inference, we used a recently developed likelihood function that does not obviously violate the statistical assumptions, namely a continuous-time autoregressive error model. We implemented all these techniques for the soil and water assessment tool (SWAT) and applied them to the Chaohe Basin in China. We compared the results with respect to the posterior parameter distributions, performances of their best estimates, prediction uncertainty, conceptual bases, computational efficiency, and difficulty of implementation. The comparison results for these categories are listed and the advantages and disadvantages are analyzed. From the point of view of the authors, if computationally feasible, Bayesian-based approaches are most recommendable because of their solid conceptual basis, but construction and test of the likelihood function requires critical attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1376完成签到 ,获得积分10
刚刚
科研通AI6应助完美羿采纳,获得10
刚刚
小马甲应助无语的笑寒采纳,获得10
刚刚
刚刚
我有魔鬼大头应助wang采纳,获得20
1秒前
我爱科研发布了新的文献求助10
1秒前
zxp给zxp的求助进行了留言
1秒前
大力元霜发布了新的文献求助10
1秒前
1秒前
zouyun发布了新的文献求助10
2秒前
zz发布了新的文献求助10
2秒前
2秒前
天真幻珊完成签到 ,获得积分10
3秒前
huahuaaixuexi完成签到,获得积分10
3秒前
15169928657发布了新的文献求助10
4秒前
TANG完成签到,获得积分10
4秒前
5秒前
时间发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
8秒前
8秒前
小程快跑发布了新的文献求助10
10秒前
Kang完成签到,获得积分10
10秒前
10秒前
0ne222完成签到,获得积分10
11秒前
大表哥发布了新的文献求助10
11秒前
Mic发布了新的文献求助10
11秒前
frank完成签到,获得积分10
11秒前
学术垃圾完成签到,获得积分10
11秒前
12秒前
WangHaiqing发布了新的文献求助10
12秒前
Lousia发布了新的文献求助10
12秒前
Hello应助zhangcz采纳,获得10
12秒前
www完成签到,获得积分10
13秒前
科研通AI6应助gilderf采纳,获得10
13秒前
大炮完成签到,获得积分20
13秒前
14秒前
做膜的小帕才关注了科研通微信公众号
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490