兰克尔
破骨细胞
化学
激活剂(遗传学)
MAPK/ERK通路
蛋白激酶A
p38丝裂原活化蛋白激酶
细胞生物学
激酶
癌症研究
信号转导
分子生物学
内分泌学
生物
受体
生物化学
作者
Xian Wu,Zhenxi Li,Zhengfeng Yang,Chunbing Zheng,Jing Ji,Yihua Chen,Xiyun Ye,Xiao‐Yuan Lian,Wen‐Wei Qiu,Fan Yang,Jie Tang,Jianru Xiao,Mingyao Liu,Jian Luo
摘要
Abstract Receptor activator of NF-κB ligand (RANKL) stimulation leads to the activation of mitogen-activated protein kinase (MAPK)/AP-1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) signaling pathways in osteoclastogenesis. Targeting these pathways has been an encouraging strategy for bone-related diseases, such as postmenopausal osteoporosis. In this study, we examined the effects of caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE) on osteoclastogenesis. In mouse bone marrow monocytes (BMMs) and RAW264.7 cells, CADPE suppressed RANKL-induced osteoclast differentiation and actin-ring formation in a dose-dependent manner within non–growth inhibitory concentrations at the early stage, while CADPE had no effect on macrophage colony-stimulating factor (M-CSF)-induced proliferation and differentiation. At the molecular level, CADPE inhibited RANKL-induced phosphorylation of MAPKs, including extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), without significantly affecting the NF-κB signaling pathway. CADPE abrogated RANKL-induced activator protein 1 (AP-1)/FBJ murine osteosarcoma viral oncogene homolog (c-Fos) nuclear translocation and activation. Overexpression of c-Fos prevented the inhibition by CADPE of osteoclast differentiation. Furthermore, CADPE suppressed RANKL-induced the tumor necrosis factor receptor associated factor 6 (TRAF6) interaction with c-src tyrosine kinase (c-Src), blocked RANKL-induced the phosphorylation of protein kinase B (AKT), and inhibited RANKL-induced Ca2+ oscillation. As a result, CADPE decreased osteoclastogenesis-related marker gene expression, including NFATc1, TRAP, cathepsin K, and c-Src. To test the effects of CADPE on osteoclast activity in vivo, we showed that CADPE prevented ovariectomy-induced bone loss by inhibiting osteoclast activity. Together, our data demonstrate that CADPE suppresses osteoclastogenesis and bone loss through inhibiting RANKL-induced MAPKs and Ca2+-NFATc1 signaling pathways. CADPE is a novel agent in the treatment of osteoclast-related diseases, such as osteoporosis. © 2012 American Society for Bone and Mineral Research.
科研通智能强力驱动
Strongly Powered by AbleSci AI