光催化
材料科学
异质结
纳米棒
罗丹明B
X射线光电子能谱
可见光谱
化学工程
纳米技术
光电子学
催化作用
化学
有机化学
工程类
作者
Qiyao Guo,Yunfang Huang,Hui Xu,Dan Luo,Feiyue Huang,Lin Gu,Yuelin Wei,Zhao Huang,Leqing Fan,Jihuai Wu
标识
DOI:10.1016/j.solidstatesciences.2018.02.013
摘要
Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron–hole separation, and lead to the increasing photocatalytic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI