催化作用
微型多孔材料
部分
穆斯堡尔谱学
化学
金属有机骨架
X射线吸收精细结构
吸收光谱法
金属
X射线吸收光谱法
纳米材料基催化剂
吸收(声学)
铂金
热解
结晶学
扩展X射线吸收精细结构
无机化学
材料科学
光谱学
物理化学
立体化学
吸附
有机化学
物理
复合材料
量子力学
作者
Meiling Xiao,Jianbing Zhu,Liang Ma,Jin Zhao,Junjie Ge,Xin Deng,Yang Hou,Qinggang He,Jingkun Li,Qingying Jia,Sanjeev Mukerjee,Ruoou Yang,Zheng Jiang,Dangsheng Su,Changpeng Liu,Wei Xing
标识
DOI:10.1021/acscatal.8b00138
摘要
Developing highly efficient, low-cost oxygen reduction catalysts, especially in acidic medium, is of significance toward fuel cell commercialization. Although pyrolyzed Fe-N-C catalysts have been regarded as alternatives to platinum-based catalytic materials, further improvement requires precise control of the Fe-Nx structure at the molecular level and a comprehensive understanding of catalytic site structure and the ORR mechanism on these materials. In this report, we present a microporous metal–organic-framework-confined strategy toward the preferable formation of single-atom dispersed catalysts. The onset potential for Fe-N-C is 0.92 V, comparable to that of Pt/C and outperforming most noble-metal-free catalysts ever reported. A high-spin Fe3+-N4 configuration is revealed by the 57Fe Mössbauer spectrum and X-ray absorption spectroscopy for Fe L-edge, which will convert to Fe2+-N4 at low potential. The in situ reduced Fe2+-N4 moiety from high-spin Ox-Fe3+-N4 contributes to most of the ORR activity due to its high turnover frequency (TOF) of ca. 1.71 e s–1 sites–1.
科研通智能强力驱动
Strongly Powered by AbleSci AI